【題目】如圖,△ABC、△ADE是等邊三角形,B、C、D在同一直線上.
求證:
(1)CE=AC+DC;
(2)∠ECD=60°.
【答案】
(1)證明:∵△ABC、△ADE是等邊三角形,
∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即:∠BAD=∠CAE,
∴△BAD≌△CAE,
∴BD=EC,
∵BD=BC+CD=AC+CD,
∴CE=BD=AC+CD
(2)
證明:由(1)知:△BAD≌△CAE,
∴∠ACE=∠ABD=60°,
∴∠ECD=180°﹣∠ACB﹣∠ACE=60°,
∴∠ECD=60°
【解析】(1)根據(jù)△ABC、△ADE都是等邊三角形,得到AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,推出∠BAD=∠CAE,得到△BAD≌△CAE,根據(jù)全等三角形的性質(zhì)得到BD=EC,即可推出答案;(2)由(1)知:△BAD≌△CAE,根據(jù)平角的意義即可求出∠ECD的度數(shù).
【考點精析】本題主要考查了對頂角和鄰補角和等邊三角形的性質(zhì)的相關知識點,需要掌握兩直線相交形成的四個角中,每一個角的鄰補角有兩個,而對頂角只有一個;等邊三角形的三個角都相等并且每個角都是60°才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】若點M(x,y)滿足(x+y)2=x2+y2﹣2,則點M所在象限是( )
A. 第一、三象限 B. 第二、四象限 C. 第一、二象限 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:如圖1,點P(x,y)在平面直角坐標中,過點P作PA⊥x軸,垂足為A,將點P繞垂足A順時針旋轉角α(0°<α<90°)得到對應點P′,我們稱點P到點P′的運動為傾斜α運動.例如:點P(0,2)傾斜30°運動后的對應點為P′(1,).
圖形E在平面直角坐標系中,圖形E上的所有點都作傾斜α運動后得到圖形E′,這樣的運動稱為圖形E的傾斜α運動.
理解
(1)點Q(1,2)傾斜60°運動后的對應點Q′的坐標為 ;
(2)如圖2,平行于x軸的線段MN傾斜α運動后得到對應線段M′N′,M′N′與MN平行且相等嗎?說明理由.
應用:(1)如圖3,正方形AOBC傾斜α運動后,其各邊中點E,F(xiàn),G,H的對應點E′,F(xiàn)′,G′,H′構成的四邊形是什么特殊四邊形: ;
(2)如圖4,已知點A(0,4),B(2,0),C(3,2),將△ABC傾斜α運動后能不能得到Rt△A′B′C′,且∠A′C′B′為直角,其中點A′,B′,C′為點A,B,C的對應點.請求出cosα的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,BC=12,∠B=30°,AB的垂直平分線DE交BC邊于點E,AC的垂直平分線MN交BC于點N。
(1)求△AEN的周長;
(2)求證:BE=EN=NC。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上A點表示原點左邊距離原點3個單位長度、B點在原點右邊距離原點2個單位長度,那么兩點所表示的有理數(shù)的和是。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOM與∠MOB互為余角,且∠BOC=30°,OM平分∠AOC,ON平分∠BOC.
(1)求∠MON的度數(shù);
(2)如果已知中∠AOB=80°,其他條件不變,求∠MON的度數(shù);
(3)如果已知中∠BOC=60°,其他條件不變,求∠MON的度數(shù);
(4)從(1)、(2)、(3)中你能看出有什么規(guī)律.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com