【題目】如圖,邊長為4的等邊△ABC,AC邊在x軸上,點By軸的正半軸上,以OB為邊作等邊△OBA1,邊OA1AB交于點O1,以O1B為邊作等邊△O1BA2,邊O1A2A1B交于點O2,以O2B為邊作等邊△O2BA3,邊O2A3A2B交于點O3,,依此規(guī)律繼續(xù)作等邊△On1BAn,則的橫坐標(biāo)_____

【答案】

【解析】

由題意:△OO1A∽△O1O2A1∽△O2O3A2,…,∽△On-1OnAn-1,相似比:,探究規(guī)律,利用規(guī)律即可解決問題.

∵邊長為4的等邊△ABC,AC邊在x軸上,點By軸的正半軸上,OBAC,

∴∠BAC=ABC=60°,

,,

∵以OB為邊作等邊△OBA1,邊OA1AB交于點O1,以O1B為邊作等邊△O1BA2,邊O1A2A1B交于點O2,

∴∠BA1O=A1OB=A2O1B=60°,,

∴∠AOO1=A1O1O2=90°-60°=30°,

在△OO1A與△O1O2A1中,

,

∴△OO1A∽△O1O2A1

同理,可得△OO1A∽△O1O2A1∽△O2O3A2∽…∽△On-1OnAn-1,相似比:

∵∠OBA=O1BA1=O2BA2=O3BA3==O1BA1=On-1BAn-1=30°,360°÷30°=12,

∴這些點所在的位置以360°÷30°=12個為一個周期依次循環(huán),

2020÷12=168……4

A2020的橫坐標(biāo)為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸交于點

1)求一次函數(shù)的解析式和點的坐標(biāo);

2)在反比例函數(shù)的圖象上取一點,直線軸于點,若點恰為線段的中點,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點A的坐標(biāo)為,頂點D的坐標(biāo)為,延長軸于點A,作正方形,延長軸于點,作正方形,按這樣的規(guī)律進行下去,第2021個正方形的周長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線yax2+bx+ca0)的部分圖象,其頂點坐標(biāo)為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間,則下列結(jié)論:4a2b+c03a+b0;b24acn);一元二次方程ax2+bx+cn1有兩個互異實根.其中正確結(jié)論的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.為了解全國中學(xué)生視力的情況,應(yīng)采用普查的方式

B.某種彩票中獎的概率是,買1000張這種彩票一定會中獎

C.2000名學(xué)生中隨機抽取200名學(xué)生進行調(diào)查,樣本容量為200名學(xué)生

D.從只裝有白球和綠球的袋中任意摸出一個球,摸出黑球是確定事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于兩點,與軸交于點連接

1)求反比例函數(shù)的解析式;

2)若點軸上,且,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,,將矩形折疊,使點B與點D重合,點A的對應(yīng)點為,折痕EF的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有高度相同的一段方木和一段圓木,體積之比是1:1.在高度不變的情況下,如果將方木加工成盡可能大的圓柱,將圓木加工成盡可能大的長方體,則得到的圓柱和長方體的體積之比為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】依托獨特的氣候資源,天然肥沃的優(yōu)質(zhì)土壤,廣元市大力推廣蔬菜種植,疫情防控期間,某蔬菜種植基地通過電商平臺將蔬菜銷往全國各地,銷量大幅度提升.該基地為提高蔬菜產(chǎn)量,計劃對甲、乙兩種型號蔬菜大棚進行改造,根據(jù)預(yù)算,改造2個甲種型號大棚比1個乙種型號大棚多需資金6萬元,改造1個甲種型號大棚和2個乙種型號大棚共需資金48萬元.

1)求改造1個甲種型號和1個乙種型號大棚所需資金分別是多少萬元;

2)已知改造1個甲種型號大棚需要5天,改造1個乙種型號大棚需要3天,該基地計劃用126萬元資金改造一定數(shù)量的兩種型號蔬菜大棚,且要求改造時間總共不超過50天,請問:有幾種改造方案?哪種方案改造時間最短?

查看答案和解析>>

同步練習(xí)冊答案