【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°, = ,過點(diǎn)C作CE⊥AD,垂足為E,若AE=3,DE= ,求∠ABC的度數(shù).
【答案】解:作BF⊥CE于F,
∵∠BCF+∠DCE=90°,∠D+∠DCE=90°,
∴∠BCF=∠D.
又BC=CD,
∴Rt△BCF≌Rt△CDE.
∴BF=CE.
又∵∠BFE=∠AEF=∠A=90°,
∴四邊形ABFE是矩形.
∴BF=AE.
∴AE=CE=3,
在Rt△CDE中
∵
∴∠D=60°
∵∠ABC+∠D=180°
∴∠ABC=120°.
【解析】由弧BC=弧CD ,可得弦BC=CD ,需作BF⊥CE于F,構(gòu)造全等三角形,Rt△BCF≌Rt△CDE,由三角函數(shù)求出tan D,由∠BCF=∠D,再利用圓內(nèi)接四邊形性質(zhì),求出∠ABC的度數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是∠BAC的平分線,AE是∠BAC的外角的平分線,CE⊥AE于點(diǎn)E. 求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,平分交于點(diǎn),給出以下結(jié)論:①為等腰直角三角形;②為等邊三角形;③;④⑤是的中位線.其中正確的結(jié)論有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O為四邊形ABCD的外接圓,O為圓心,若∠BCD=120°,AB=AD=2,則⊙O的半徑長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線上有三個(gè)正方形,若正方形,的面積分別為8和15,則正方形的面積為( )
A.23B.25C.30D.35
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)果農(nóng)收獲草莓30噸,枇杷13噸,現(xiàn)計(jì)劃租用甲、乙兩種貨車共10輛將這批水果全部運(yùn)往省城,已知甲種貨車可裝草莓4噸和枇杷1噸,乙種貨車可裝草莓、枇杷各2噸.
(1)該果農(nóng)安排甲、乙兩種貨車時(shí)有幾種方案請(qǐng)您幫助設(shè)計(jì)出來;
(2)若甲種貨車每輛要付運(yùn)輸費(fèi)2 000元,乙種貨車每輛要付運(yùn)輸費(fèi)1 300元,則該果農(nóng)應(yīng)選擇哪種運(yùn)輸方案才能使運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一個(gè)智能機(jī)器人接到如下指令,從原點(diǎn)O出發(fā),按向右、向上、向右、向下的方向依次不斷移動(dòng),每次移動(dòng)1個(gè)單位長度,其行走的路線如圖所示,第1次移動(dòng)到A1,第2次移動(dòng)到A2……,第n次移動(dòng)到An,則三角形OA2A2018的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).
(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com