【題目】在平面直角坐標(biāo)系中,點(diǎn) , ,將直線平移與雙曲線在第一象限的圖象交于、兩點(diǎn).
(1)如圖1,將繞逆時(shí)針旋轉(zhuǎn)得與對(duì)應(yīng),與對(duì)應(yīng)),在圖1中畫(huà)出旋轉(zhuǎn)后的圖形并直接寫(xiě)出、坐標(biāo);
(2)若,
①如圖2,當(dāng)時(shí),求的值;
②如圖3,作軸于點(diǎn),軸于點(diǎn),直線與雙曲線有唯一公共點(diǎn)時(shí),的值為 .
【答案】(1)作圖見(jiàn)解析,,;(2)①k=6;②.
【解析】
(1)根據(jù)題意,畫(huà)出對(duì)應(yīng)的圖形,根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,從而求出點(diǎn)E、F的坐標(biāo);
(2)過(guò)點(diǎn)作軸于,過(guò)點(diǎn)作軸于,過(guò)點(diǎn)作于,根據(jù)相似三角形的判定證出,列出比例式,設(shè),根據(jù)反比例函數(shù)解析式可得(Ⅰ);
①根據(jù)等角對(duì)等邊可得,可列方程(Ⅱ),然后聯(lián)立方程即可求出點(diǎn)D的坐標(biāo),從而求出k的值;
②用m、n表示出點(diǎn)M、N的坐標(biāo)即可求出直線MN的解析式,利于點(diǎn)D和點(diǎn)C的坐標(biāo)即可求出反比例函數(shù)的解析式,聯(lián)立兩個(gè)解析式,令△=0即可求出m的值,從而求出k的值.
解:(1)點(diǎn) , ,
,,
如圖1,
由旋轉(zhuǎn)知,,,,
點(diǎn)在軸正半軸上,點(diǎn)在軸負(fù)半軸上,
,;
(2)過(guò)點(diǎn)作軸于,過(guò)點(diǎn)作軸于,過(guò)點(diǎn)作于,
,,
,
,
,
,
,
,
,
,
,,,
,,
,
設(shè),
,
,,
點(diǎn),在雙曲線上,
,
(Ⅰ)
①,
,
,
,
(Ⅱ),
聯(lián)立(Ⅰ)(Ⅱ)解得:,,
;
②如圖3,
,,
,,
,
,
直線的解析式為(Ⅲ),
雙曲線(Ⅳ),
聯(lián)立(Ⅲ)(Ⅳ)得:,
即:,
△,
直線與雙曲線有唯一公共點(diǎn),
△,
△,
(舍或,
,
.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線y=x2﹣x+2與直線y=x﹣2的圖象如圖,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線y=x﹣2的最短距離為( 。
A.B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),繪出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是( 。
A. 拋一枚硬幣,出現(xiàn)正面朝上
B. 擲一個(gè)正六面體的骰子,出現(xiàn)3點(diǎn)朝上
C. 一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃
D. 從一個(gè)裝有2個(gè)紅球1個(gè)黑球的袋子中任取一球,取到的是黑球
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一元二次方程x2+2x﹣3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)B,C的橫坐標(biāo),且此拋物線過(guò)點(diǎn)A(3,6).
(1)求此二次函數(shù)的解析式;
(2)寫(xiě)出不等式ax2+bx+c≥0的解集;
(3)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱(chēng)軸與線段AC相交于點(diǎn)Q,求點(diǎn)P和點(diǎn)Q的坐標(biāo);
(4)在x軸上有一動(dòng)點(diǎn)M,當(dāng)MQ+MA取得最小值時(shí),求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的正方形有5個(gè),第(3)個(gè)圖形中面積為1的正方形有9個(gè),按此規(guī)律,則第(n)個(gè)圖形中面積為1的正方形的個(gè)數(shù)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件成本40元,出于營(yíng)銷(xiāo)考慮,要求每件售價(jià)不得低于40元,但物價(jià)部門(mén)要求每件售價(jià)不得高于60元.據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是50元時(shí),每天的銷(xiāo)售量是100件,而銷(xiāo)售單價(jià)每漲1元,每天就少售出2件,設(shè)單價(jià)上漲元.
(1)求當(dāng)為多少時(shí)每天的利潤(rùn)是1350元?
(2)設(shè)每天的銷(xiāo)售利潤(rùn)為,求銷(xiāo)售單價(jià)為多少元時(shí),每天利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于點(diǎn)B,AC邊上一點(diǎn)O,⊙O經(jīng)過(guò)點(diǎn)B、C,與AC交于點(diǎn)D,與CE交于點(diǎn)F,連結(jié)BF。
(1)求證:AE是⊙O的切線;
(2)若,AE=8,求⊙O的半徑;
(3)在(2)條件下,求BF的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于點(diǎn)E,連接CE,過(guò)點(diǎn)C作CF∥BA交PQ于點(diǎn)F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若ED=6,AE=10,則菱形AECF的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過(guò)A(﹣1,0),B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),拋物線對(duì)稱(chēng)軸DE交x軸于點(diǎn)E,連接BD.
(1)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是線段BD上一點(diǎn),當(dāng)PE=PC時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com