【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A是拋物線與x軸正半軸的交點(diǎn),點(diǎn)B在拋物線上,其橫坐標(biāo)為2,直線AB與y軸交于點(diǎn)點(diǎn)M、P在線段AC上不含端點(diǎn),點(diǎn)Q在拋物線上,且MQ平行于x軸,PQ平行于y軸設(shè)點(diǎn)P橫坐標(biāo)為m.
(1)求直線AB所對(duì)應(yīng)的函數(shù)表達(dá)式.
(2)用含m的代數(shù)式表示線段PQ的長(zhǎng).
(3)以PQ、QM為鄰邊作矩形PQMN,求矩形PQMN的周長(zhǎng)為9時(shí)m的值.
【答案】(1)直線AB的解析式為;(2)見(jiàn)解析;(3)m的值為或.
【解析】試題分析:(1)先利用二次函數(shù)解析式求出A點(diǎn)和B點(diǎn)坐標(biāo),然后利用待定系數(shù)法求直線AB的解析式;
(2)設(shè)P(m,-m+8),則Q(m,-m2+4m),討論:當(dāng)0<m≤2時(shí),PQ=m2-5m+8;當(dāng)2<m<8時(shí),PQ=-m2+5m-8;
(3)先表示出M(m2-4m+8,-m2+4m),討論:當(dāng)0<m≤2,QM=m2-5m+8,利用矩形周長(zhǎng)列方程得到2(m2-5m+8+m2-5m+8)=9,然后解方程求出滿足條件m的值;當(dāng)2<m<8,QM=-m2+5m-8,利用矩形周長(zhǎng)列方程得到2(-m2+5m-8-m2+5m-8)=9,然后解方程求出滿足條件m的值.
試題解析:(1)當(dāng)y=0時(shí),-x2+4x=0,解得x1=0,x2=8,則A(8,0);
當(dāng)x=2時(shí),y=-x2+4x=6,則B(2,6),
設(shè)直線AB所對(duì)應(yīng)的函數(shù)表達(dá)式為y=kx+b,
將A(8,0),B(2,6)代入可得,
解得,
所以直線AB的解析式為y=-x+8;
(2)設(shè)P(m,-m+8),則Q(m,-m2+4m),
當(dāng)0<m≤2時(shí),PQ=-m+8-(-m2+4m)=m2-5m+8;
當(dāng)2<m<8時(shí),PQ=-m2+4m-(-m+8)=-m2+5m-8;
(3)∵MQ∥x軸,
∴M點(diǎn)的縱坐標(biāo)為-m2+4m,
∴M點(diǎn)的橫坐標(biāo)為m2-4m+8,即M(m2-4m+8,-m2+4m),
當(dāng)0<m≤2,QM=m2-4m+8-m=m2-5m+8,
∵2(PQ+QM)=9,
∴2(m2-5m+8+m2-5m+8)=9,
整理得2m2-20m+23=0,解得m1=,m2=(舍去);
當(dāng)2<m<8,QM=m-(m2-4m+8)=-m2+5m-8,
∵2(PQ+QM)=9,
∴2(-m2+5m-8-m2+5m-8)=9,
整理得2m2-20m+41=0,解得m1=,m2=(舍去);
綜上所述,m的值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
解方程:x4﹣6x2+5=0.這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:
設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)?/span>y2﹣6y+5=0…①,
解這個(gè)方程得:y1=1,y2=5.
當(dāng)y=1時(shí),x2=1,∴x=±1;
當(dāng)y=5時(shí),x2=5,∴x=±
所以原方程有四個(gè)根:x1=1,x2=﹣1,x3=,x4=﹣.
在這個(gè)過(guò)程中,我們利用換元法達(dá)到降次的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
(1)解方程(x2﹣x)2﹣4(x2﹣x)﹣12=0時(shí),若設(shè)y=x2﹣x,則原方程可轉(zhuǎn)化為 ;求出x
(2)利用換元法解方程:=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)服裝柜在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六一”國(guó)際兒童節(jié),商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡量減少庫(kù)存.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.假設(shè)商場(chǎng)降價(jià)元,
(1)降價(jià)元后,每一件童裝的利潤(rùn)為_(kāi)__________(元),每天可以賣出去的童裝件數(shù)為_(kāi)___________(件)(用含的代數(shù)式表示);
(2)若銷售該童裝每天盈利要達(dá)到1200元,則每件童裝應(yīng)該降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的頂點(diǎn)為,與x軸的一個(gè)交點(diǎn)A在點(diǎn)和之間,其部分圖象如圖,其中錯(cuò)誤的結(jié)論為
A. 方程的根為 B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖一次函數(shù)y1=-x-2與y2=x-4的圖象相交于點(diǎn)A.
(1)求點(diǎn)A的坐標(biāo);
(2)若一次函數(shù)y1=-x-2與y2=x-4的圖象與x軸分別相交于點(diǎn)B、C,求△ABC的面積.
(3)結(jié)合圖象,直接寫出y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,已知∠C=90°,∠A=60°,AC=3cm,以斜邊AB的中點(diǎn)P為旋轉(zhuǎn)中心,把這個(gè)三角形按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到Rt△A′B′C′,則旋轉(zhuǎn)前后兩個(gè)直角三角形重疊部分的面積為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)G在對(duì)角線BD上(不與點(diǎn)B,D重合),GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,連結(jié)AG.
(1)寫出線段AG,GE,GF長(zhǎng)度之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若正方形ABCD的邊長(zhǎng)為1,∠AGF=105°,求線段BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一兒童服裝商店在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡快減少庫(kù)存.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的圖例①是一個(gè)方陣圖,每行的3個(gè)數(shù)、每列的3個(gè)數(shù)、斜對(duì)角的3個(gè)數(shù)相加的和均相等.如果將方陣圖的每個(gè)數(shù)都加上同一個(gè)數(shù),那么方陣中每行的3個(gè)數(shù)、每列的3個(gè)數(shù)、斜對(duì)角的3個(gè)數(shù)相加的和仍然相等,這樣就形成新的方陣圖.
根據(jù)圖①②③中給出的數(shù),對(duì)照原來(lái)的方陣圖,請(qǐng)你完成圖②③的方陣圖?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com