【題目】用條長40厘米的繩子圍成一個矩形,設其一邊長為x厘米.
(1)若矩形的面積為96平方厘米,求x的值;
(2)矩形的面積是否可以為101平方厘米?如果能,請求x的值;如果不能,請說明理由.
科目:初中數學 來源: 題型:
【題目】如圖,某游樂園有一個滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數據:sin58°=0.85,cos58°=0.53,tan58°=1.60)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一艘輪船以18海里/時的速度由西向東方向航行,行至A處測得燈塔P在它的北偏東60°的方向上,繼續(xù)向東行駛20分鐘后,到達B處又測得燈塔P在它的北偏東45°方向上,求輪船與燈塔的最短距離.(精確到0.1, ≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將函數y=x+b(b為常數)的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數y=|x+b|(b為常數)的圖象
(1)當b=0時,在同一直角坐標系中分別畫出函數與y=|x+b|的圖象,并利用這兩個圖象回答:x取什么值時,比|x|大?
(2)若函數y=|x+b|(b為常數)的圖象在直線y=1下方的點的橫坐標x滿足0<x<3,直接寫出b的取值范圍
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】韋達定理:若一元二次方程ax2+bx+c=0(a≠0)的兩根分別為x1、x2 , 則x1+x2=﹣ , x1x2= , 閱讀下面應用韋達定理的過程:
若一元二次方程﹣2x2+4x+1=0的兩根分別為x1、x2 , 求x12+x22的值.
解:該一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0
由韋達定理可得,x1+x2=﹣=﹣=2,x1x2===﹣
x12+x22=(x1+x2)2﹣2x1x2
=22﹣2×(﹣)
=5
然后解答下列問題:
(1)設一元二次方程2x2+3x﹣1=0的兩根分別為x1,x2, 不解方程,求x12+x22的值;
(2)若關于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的兩根分別為α,β,且α2+β2=4,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線PT與⊙O相交于點T,直線PO與⊙O相交于A,B兩點.已知∠PTA=∠B.
(1)求證:PT是⊙O的切線;
(2)若PT=6,PA=4,求⊙O的半徑;
(3)若PT=TB=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=m(x+3)2+n與y=m(x﹣2)2+n+1交于點A.過點A作x軸的平行線,分別交兩條拋物線于點B、C(點B在點C左側),則線段BC的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知方格紙中的每個小方格都是相同的正方形(邊長為1),方格紙上有一個角∠AOB,A,O,B均為格點,請回答問題并只用無刻度直尺和鉛筆,完成下列作圖并簡要說明畫法:
(1)OA=_____;
(2)作出∠AOB的平分線并在其上標出一個點Q,使OQ=.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=5x+5交x軸于點A,交y軸于點C,過A,C兩點的二次函數y=ax2+4x+c的圖象交x軸于另一點B.
(1)求二次函數的表達式;
(2)連接BC,點N是線段BC上的動點,作ND⊥x軸交二次函數的圖象于點D,求線段ND長度的最大值;
(3)若點H為二次函數y=ax2+4x+c圖象的頂點,點M(4,m)是該二次函數圖象上一點,在x軸,y軸上分別找點F,E,使四邊形HEFM的周長最小,求出點F、E的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com