【題目】如圖,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺規(guī)作圖:過點B作AC的垂線,交AC于O,交AE于D,(保留作圖痕跡,不寫作法);
(2)在(1)的圖形中,找出兩條相等的線段,并予以證明.

【答案】
(1)解:如圖,BO為所作;


(2)解:AB=AD=BC.證明如下:

∵AE∥BF,

∴∠EAC=∠BCA,

∵AC平分∠BAE,

∴∠EAC=∠BAC,

∴∠BCA=∠BAC,

∴BA=BC,

∵BD⊥AO,AO平分∠BAD,

∴AB=AD,

∴AB=AD=BC


【解析】(1)利用基本作圖作BO⊥AC即可;(2)先利用平行線的性質(zhì)得∠EAC=∠BCA,再根據(jù)角平分線的定義和等量代換得到∠BCA=∠BAC,則BA=BC,然后根據(jù)等腰三角形的判定方法由BD⊥AO,AO平分∠BAD得到AB=AD,所以AB=AD=BC.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C是線段AB的中點,CD平分ACE,CE平分BCD,CD=CE;

(1)求證:ACD≌△BCE;

(2)D=50°,求B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,頂點AB的坐標分別是A1,0),B0,2),頂點C、D在雙曲線y=上,邊ADy軸相交于點E,S四邊形BEDC=5SABE=10,則k的值是(  。

A. -16 B. -9 C. -8 D. -12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD是角平分線,BE平分∠ABC交AD于點E,點O在AB上,以OB為半徑的⊙O經(jīng)過點E,交AB于點F
(1)求證:AD是⊙O的切線;
(2)若AC=4,∠C=30°,求 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只螞蟻在一個半圓形的花壇的周邊尋找食物,如圖1,螞蟻從圓心O出發(fā),按圖中箭頭所示的方向,依次爬完下列三條線路:(1)線段OA、(2)半圓弧AB、(3)線段BO后,回到出發(fā)點。已知螞蟻在爬行過程中保持勻速,且在尋找到食物后停下來吃了2分鐘。螞蟻離出發(fā)點的距離s(螞蟻所在位置與O點之間線段的長度)與時間t之間的圖象如圖2所示,問:

(1)花壇的半徑是_______米,螞蟻是在上述三條線路中的哪條上尋找到了食物_________(填(1)、(2)、或(3));

(2)螞蟻的速度是_______/分鐘;

(3)螞蟻從O點出發(fā),直到回到O點,一共用時多少分鐘?(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖將邊長為的正三角形紙片按如下順序進行兩次折疊,展開后,得折痕, 如圖),為其交點

探求的數(shù)量關系,并說明理由

如圖, 分別為, 上的動點

的長度取得最小值時,的長度

如圖,若點在線段, ,的最小值__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論不正確的是(
A.a<0
B.c>0
C.a+b+c>0
D.b2﹣4ac>0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級學生在學習《數(shù)據(jù)的分析》后,進行了檢測,現(xiàn)將該校八(1)班學生的成績統(tǒng)計如下表,并繪制成條形統(tǒng)計圖(不完整).

分數(shù)(分)

人數(shù)(人)

68

4

78

7

80

3

88

5

90

10

96

6

100

5


(1)補全條形統(tǒng)計圖;
(2)該班學生成績的平均數(shù)為86.85分,寫出該班學生成績的中位數(shù)和眾數(shù);
(3)該校八年級共有學生500名,估計有多少學生的成績在96分以上(含96分)?
(4)小明的成績?yōu)?8分,他的成績?nèi)绾,為什么?/span>

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】旅客乘車按規(guī)定可以隨身攜帶一定重量的行李,如果超過規(guī)定,則需要購買行李票,設行李費y(元)與行李重量x(千克)的關系如圖,根據(jù)圖象回答下列問題:

(1)行李重量在________千克以內(nèi),不必交費;

(2)當行李重量60千克時,交費____;

(3)當行李重量________千克時,交費10;

(4)行李重量每增加1千克,多交_________;

(5)y= __________ ( yx之間的關系式)

查看答案和解析>>

同步練習冊答案