【題目】如圖,已知直線y=kx+bx軸于點A,交y軸于點B,直線y=2x﹣4x軸于點D,與直線AB相交于點C(3,2).

(1)根據(jù)圖象,寫出關于x的不等式2x﹣4>x+b的解集;

(2)若點A的坐標為(5,0),求直線AB的解析式;

(3)在(2)的條件下,求四邊形BODC的面積.

【答案】(1)x>3(2)y=-x+5(3)9

【解析】

(1)根據(jù)C點坐標結合圖象可直接得到答案;

(2)利用待定系數(shù)法把點A(5,0),C(3,2)代入y=kx+b可得關于k、b得方程組,再解方程組即可;

(3)由直線解析式求得點A、B和點D的坐標,進而根據(jù)S四邊形BODC=SAOB-SACD進行求解即可得.

1)根據(jù)圖象可得不等式2x-4>x+b的解集為:x>3;

(2)把點A(5,0),C(3,2)代入y=kx+b可得:

,解得:,

所以解析式為:y=-x+5;

(3)把x=0代入y=-x+5得:y=5,

所以點B(0,5),

y=0代入y=-x+5得:x=2,

所以點A(5,0),

y=0代入y=2x-4得:x=2,

所以點D(2,0),

所以DA=3,

所以S四邊形BODC=SAOB-SACD==9.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校開展課外體育活動,決定開設A:籃球、B:乒乓球、C:武術、D:跑步四種活動項目為了解學生最喜歡哪一種活動項目每人只選取一種隨機抽取了m名學生進行調查,并將調查結果繪成如下統(tǒng)計圖,請你結合圖中信息解答下列問題:

______;

在扇形統(tǒng)計圖中“乒乓球”所對應扇形的圓心角的度數(shù)為______;

請把圖的條形統(tǒng)計圖補充完整;

若該校有學生1200人,請你估計該校最喜歡武術的學生人數(shù)約是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊鐵片邊緣是由拋物線和線段AB組成,測得AB=20cm,拋物線的頂點到AB邊的距離為25cm.現(xiàn)要沿AB邊向上依次截取寬度均為4cm的矩形鐵皮,從下往上依次是第一塊,第二塊…如圖所示.已知截得的鐵皮中有一塊是正方形,則這塊正方形鐵皮是第塊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分線AD、BD相交于點D,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖的20166月份的日歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是(   )

A. 27 B. 51 C. 69 D. 72

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠家生產(chǎn)的一種新型節(jié)能燈,為了打開市場出臺了相關政策:由廠家協(xié)調,廠家按成本價提供產(chǎn)品給經(jīng)營戶自主銷售,成本價與出廠價之間的差價由廠家承擔.李明按照相關政策投資銷售本產(chǎn)品.已知這種節(jié)能燈的成本價為每件10元,出廠價為每件12元,每月銷售量y(件)與銷售單價x(元)之間的關系近似滿足一次函數(shù):y=﹣10x+500.
(1)李明在開始銷售的第一個月將銷售單價定為20元,那么廠家這個月為他承擔的總差價為多少元?
(2)設李明獲得的利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3000元,那么廠家為他承擔的總差價最少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,D為AB上一點,E為BC上一點,且AC=CD=BD=BE,∠A=50°,則∠CDE的度數(shù)為(
A.50°
B.51°
C.51.5°
D.52.5°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場第一次用11000元購進某款拼裝機器人進行銷售,很快銷售一空,商家又用24000元第二次購進同款機器人,所購進數(shù)量是第一次的2倍,但單價貴了10元.

(1)求該商家第一次購進機器人多少個?

(2)若所有機器人都按相同的標價銷售,要求全部銷售完畢的利潤率不低于20%(不考慮其它因素),那么每個機器人的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=﹣2x+a與y軸交于點C (0,6),與x軸交于點B.

(1)求這條直線的解析式;

(2)直線AD與(1)中所求的直線相交于點D(﹣1,n),點A的坐標為(﹣3,0).

①求n的值及直線AD的解析式;

②求△ABD的面積;

③點M是直線y=﹣2x+a上的一點(不與點B重合),且點M的橫坐標為m,求△ABM的面積S與m之間的關系式.

查看答案和解析>>

同步練習冊答案