【題目】如圖①,△ABC是等邊三角形,D、E分別為邊BC和AC上的點,且BD=CE,過D作BE的平行線,過E作BC的平行線,它們交于點F,連接AF.
(1)求證:△ABE≌△CAD;
(2)試判斷△ADF的形狀,并說明理由;
(3)若將D、E分別移為邊CB的延長線和AC的延長線上的點,其它條件不變(如圖②),則△ADF的形狀是否改變,說明理由.
【答案】(1)證明見解析(2)△ADF是等邊三角形(3)△ADF仍是等邊三角形
【解析】
(1)△ABE、△CAD中,已知的條件有:AB=AC,∠BAE=∠ACD=60°;若求兩個三角形全等,只需再證得AE=CD即可,易知AC=BC,而BD=CE,即可得到AE=CD,由此得證;
(2)易證得四邊形BDFE是平行四邊形,則BE=DF=AD;設AD、BE交于G,則∠ADF=∠BGD;
而∠BGD=∠ABE+∠DAB,由(1)的全等三角形知:∠DAC=∠ABE,故∠BGD=∠DAC+∠DAB=60°,等量代換后,可求得∠ADF=60°,即可得到△ADF是等邊三角形的結(jié)論.
(3)與(2)的結(jié)論相同,解題思路與(1)(2)完全相同.
(1)證明:∵△ABC是等邊三角形,
∴∠BAE=∠C=60°,AB=AC=BC;
∵BD=CE,
∴AC﹣CE=BC﹣BD,∴AE=CD;
又AB=AC,
∴△ABE≌△CAD;
(2)△ADF是等邊三角形,理由如下:
∵△ABC是等邊三角形,∴∠BAC=60°;
∵DF∥BE,EF∥BC,
∴∠1=∠2,四邊形BDFE是平行四邊形;
∴BE=DF;
∵△ABE≌△CAD,∴∠4=∠5,BE=AD,∴DF=AD;
∵∠1=∠3+∠4,∴∠2=∠3+∠5=∠BAC=60°;
∴△ADF是等邊三角形;
(3)△ADF仍是等邊三角形,理由如下:
∵△ABC是等邊三角形,∴∠ABC=∠BAE=∠C=60°,AB=BC;
∴∠ABD=∠BCD=180°﹣120°;
∵BD=CE,∴△ABD≌△BCE,∴∠1=∠3,BE=AD;
∵DF∥BE,EF∥BC,
∴∠1=∠2,四邊形BDFE是平行四邊形;
∴BE=DF,∴DF=AD;
∵∠3+∠4=∠ABC=60°,∴∠2+∠4=60°即∠ADF=60°
∴△ADF是等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC的垂直平分線分別交AD,BC于點E,F(xiàn),連接CE,若△CED的周長為6,則ABCD的周長為( )
A.6
B.12
C.18
D.24
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,如圖1,在平面直角坐標系中,已知點A(﹣4,﹣1)、B(﹣2,1),將線段AB平移至線段CD,使點A的對應點C在x軸的正半軸上,點D在第一象限.
(1)若點C的坐標(k,0),求點D的坐標(用含k的式子表示);
(2)連接BD、BC,若三角形BCD的面積為5,求k的值;
(3)如圖2,分別作∠ABC和∠ADC的平分線,它們交于點P,請寫出∠A、和∠P和∠BCD之間的一個等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路上有、兩地,甲騎自行車從地到地;乙騎自行車從地到地,到達地后立即按原路返回,如圖是甲乙兩人離地的距離與行駛時間之間的函數(shù)圖像,根據(jù)圖像解答以下問題:
(1)求出甲離地的距離與行駛時間之間的函數(shù)表達式;
(2)求出點的坐標,并解釋改點坐標所表示的實際意義;
(3)若兩人之間保持的距離不超過時,能夠用無線對講機保持聯(lián)系,請直接寫出甲、乙兩人能夠用無線對講機保持練習時的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我校“書香校園”活動中,某數(shù)學小組為了解學生家庭藏書情況,隨機抽取我校部分學生進行調(diào)查,并繪制成部分統(tǒng)計圖如下表:
類別 | 家庭藏書情況統(tǒng)計表 | 學生人數(shù) |
20 | ||
50 | ||
66 |
根據(jù)以上信息,解答下列問題:
(1)參加調(diào)查的學生人數(shù)為多少,a等于多少,本次調(diào)查結(jié)果的中位數(shù)在哪一類.
(2)在扇形統(tǒng)計圖中,“”對應扇形的圓心角為多少.
(3)若我校有4500名學生,請估計全校學生中藏書200本以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=﹣x+1(0≤x≤10)與反比例函數(shù)y= (﹣10≤x<0)在同一平面直角坐標系中的圖象如圖所示,點(x1 , y1),(x2 , y2)是圖象上兩個不同的點,若y1=y2 , 則x1+x2的取值范圍是( )
A.﹣ ≤x≤1
B.﹣ ≤x≤
C.﹣ ≤x≤
D.1≤x≤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生的每周平均課外閱讀時間,在本校隨機抽取若干名學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖表,請根據(jù)圖表中所給的信息,解答下列問題:
組別 | 閱讀時間t(單位:小時) | 頻數(shù)(人數(shù)) |
A | 0≤t<1 | 8 |
B | 1≤t<2 | 20 |
C | 2≤t<3 | 24 |
D | 3≤t<4 | m |
E | 4≤t<5 | 8 |
F | t≥5 | 4 |
(1)圖表中的m= , n=;
(2)扇形統(tǒng)計圖中F組所對應的圓心角為度;
(3)該校共有學生1500名,請估計該校有多少名學生的每周平均課外閱讀時間不低于3小時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB= BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE= BC,成立的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,△ABC滿足∠BCA=90°,AC=BC=,點A、C分別在x軸和y軸上,當點A從原點開始沿x軸的正方向運動時,則點C始終在y軸上運動,點B始終在第一象限運動.
(1)當AB∥y軸時,求B點坐標.
(2)隨著A、C的運動,當點B落在直線y=3x上時,求此時A點的坐標.
(3)在(2)的條件下,在y軸上是否存在點D,使以O、A、B、D為頂點的四邊形面積是4?如果存在,請直接寫出點D的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com