【題目】如圖①,△ABC是等邊三角形,D、E分別為邊BC和AC上的點,且BD=CE,過D作BE的平行線,過E作BC的平行線,它們交于點F,連接AF.

(1)求證:△ABE≌△CAD;

(2)試判斷△ADF的形狀,并說明理由;

(3)若將D、E分別移為邊CB的延長線和AC的延長線上的點,其它條件不變(如圖②),則△ADF的形狀是否改變,說明理由.

【答案】(1)證明見解析(2)△ADF是等邊三角形(3)△ADF仍是等邊三角形

【解析】

1ABE、CAD中,已知的條件有:ABAC,∠BAE=∠ACD60°;若求兩個三角形全等,只需再證得AECD即可,易知ACBC,而BDCE,即可得到AECD,由此得證;
2)易證得四邊形BDFE是平行四邊形,則BEDFAD;設AD、BE交于G,則∠ADF=∠BGD;
而∠BGD=∠ABE+∠DAB,由(1)的全等三角形知:∠DAC=∠ABE,故∠BGD=∠DAC+∠DAB60°,等量代換后,可求得∠ADF60°,即可得到ADF是等邊三角形的結(jié)論.
3)與(2)的結(jié)論相同,解題思路與(1)(2)完全相同.

1)證明:∵△ABC是等邊三角形,

∴∠BAE=∠C60°,ABACBC;

BDCE,

ACCEBCBD,∴AECD;

ABAC,

∴△ABE≌△CAD

2ADF是等邊三角形,理由如下:

∵△ABC是等邊三角形,∴∠BAC60°;

DFBE,EFBC,

∴∠1=∠2,四邊形BDFE是平行四邊形;

BEDF;

∵△ABE≌△CAD,∴∠4=∠5,BEAD,∴DFAD

∵∠1=∠3+∠4,∴∠2=∠3+∠5=∠BAC60°;

∴△ADF是等邊三角形;

3ADF仍是等邊三角形,理由如下:

∵△ABC是等邊三角形,∴∠ABC=∠BAE=∠C60°,ABBC;

∴∠ABD=∠BCD180°120°

BDCE,∴△ABD≌△BCE,∴∠1=∠3,BEAD;

DFBE,EFBC,

∴∠1=∠2,四邊形BDFE是平行四邊形;

BEDF,∴DFAD

∵∠3+∠4=∠ABC60°,∴∠2+∠460°即∠ADF60°

∴△ADF是等邊三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC的垂直平分線分別交AD,BC于點E,F(xiàn),連接CE,若△CED的周長為6,則ABCD的周長為( )

A.6
B.12
C.18
D.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,如圖1,在平面直角坐標系中,已知點A(﹣4,﹣1)、B(﹣2,1),將線段AB平移至線段CD,使點A的對應點Cx軸的正半軸上,點D在第一象限.

1)若點C的坐標(k,0),求點D的坐標(用含k的式子表示);

2)連接BD、BC,若三角形BCD的面積為5,求k的值;

3)如圖2,分別作∠ABC和∠ADC的平分線,它們交于點P,請寫出∠A、和∠P和∠BCD之間的一個等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的公路上有、兩地,甲騎自行車從地到地;乙騎自行車從地到地,到達地后立即按原路返回,如圖是甲乙兩人離地的距離與行駛時間之間的函數(shù)圖像,根據(jù)圖像解答以下問題:

(1)求出甲離地的距離與行駛時間之間的函數(shù)表達式;

(2)求出點的坐標,并解釋改點坐標所表示的實際意義;

(3)若兩人之間保持的距離不超過時,能夠用無線對講機保持聯(lián)系,請直接寫出甲、乙兩人能夠用無線對講機保持練習時的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在我校書香校園活動中,某數(shù)學小組為了解學生家庭藏書情況,隨機抽取我校部分學生進行調(diào)查,并繪制成部分統(tǒng)計圖如下表:

類別

家庭藏書情況統(tǒng)計表

學生人數(shù)

20

50

66

根據(jù)以上信息,解答下列問題:

(1)參加調(diào)查的學生人數(shù)為多少,a等于多少,本次調(diào)查結(jié)果的中位數(shù)在哪一類.

(2)在扇形統(tǒng)計圖中,對應扇形的圓心角為多少.

(3)若我校有4500名學生,請估計全校學生中藏書200本以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=﹣x+1(0≤x≤10)與反比例函數(shù)y= (﹣10≤x<0)在同一平面直角坐標系中的圖象如圖所示,點(x1 , y1),(x2 , y2)是圖象上兩個不同的點,若y1=y2 , 則x1+x2的取值范圍是( )

A.﹣ ≤x≤1
B.﹣ ≤x≤
C.﹣ ≤x≤
D.1≤x≤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生的每周平均課外閱讀時間,在本校隨機抽取若干名學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖表,請根據(jù)圖表中所給的信息,解答下列問題:

組別

閱讀時間t(單位:小時)

頻數(shù)(人數(shù))

A

0≤t<1

8

B

1≤t<2

20

C

2≤t<3

24

D

3≤t<4

m

E

4≤t<5

8

F

t≥5

4


(1)圖表中的m= , n=;
(2)扇形統(tǒng)計圖中F組所對應的圓心角為度;
(3)該校共有學生1500名,請估計該校有多少名學生的每周平均課外閱讀時間不低于3小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB= BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE= BC,成立的個數(shù)有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,△ABC滿足∠BCA90°,ACBC,點A、C分別在x軸和y軸上,當點A從原點開始沿x軸的正方向運動時,則點C始終在y軸上運動,點B始終在第一象限運動.

1)當ABy軸時,求B點坐標.

2)隨著AC的運動,當點B落在直線y3x上時,求此時A點的坐標.

3)在(2)的條件下,在y軸上是否存在點D,使以O、A、B、D為頂點的四邊形面積是4?如果存在,請直接寫出點D的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案