【題目】如圖,點(diǎn)P、Q分別是邊長為4cm的等邊ABCAB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過程中,

1)求證:ABQ CAP

2)∠CMQ的大小變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);

3)連接PQ,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)多少秒時(shí),PBQ是直角三角形?

【答案】1)見解析;(2)無變化,∠CMQ=60 ;(3t=ss時(shí), PBQ是直角三角形.

【解析】

1)根據(jù)等邊三角形的性質(zhì)、三角形全等的判定定理證明;
2)根據(jù)全等三角形的性質(zhì)得到∠BAQ=ACP,根據(jù)三角形的外角的性質(zhì)解答;
3)分∠PQB=90°和∠PBQ=90°兩種情況,根據(jù)直角三角形的性質(zhì)計(jì)算即可.

1)證明:∵△ABC是等邊三角形,
∴∠ABQ=CAP=60°AB=CA,
∵點(diǎn)P、Q的速度相同,
AP=BQ,
在△ABQ和△CAP中,

∴△ABQ≌△CAP;
2)解:∠CMQ的大小不發(fā)生變化,理由如下:
∵△ABQ≌△CAP,
∴∠BAQ=ACP,
∴∠QMC=QAC+ACP=QAC+BAQ=60°;
3)解:設(shè)點(diǎn)PQ運(yùn)動(dòng)x秒時(shí),△PBQ是直角三角形,
AP=BQ=x,PB=4-x),
當(dāng)∠PQB=90°時(shí),
∵∠B=60°,
BP=2BQ,即4-x=2x,
解得,x=,
當(dāng)∠PBQ=90°時(shí),
∵∠B=60°,
BQ=2BP,即24-x=x,
解得,x=,
∴當(dāng)點(diǎn)P,Q運(yùn)動(dòng)秒或秒時(shí),△PBQ是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別寫有數(shù)字6,﹣2,7的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個(gè)小球,記下數(shù)字.請你用畫樹形圖或列表的方法,求下列事件的概率:

(1)兩次取出小球上的數(shù)字相同的概率;

(2)兩次取出小球上的數(shù)字之和大于10的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=BC,點(diǎn)E是直線BC上一點(diǎn),連接AE,過點(diǎn)CCFAE于點(diǎn)F,連接BF.如圖①,當(dāng)點(diǎn)EBC上時(shí),易證AF﹣CF=BF(不需證明),點(diǎn)ECB的延長線上,如圖②:點(diǎn)EBC的延長線上,如圖③,線段AF,CF,BF之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想,并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校圖書館大樓工程在招標(biāo)時(shí),接到甲乙兩個(gè)工程隊(duì)的投標(biāo)書,每施工一個(gè)月,需付甲工程隊(duì)工程款16萬元,付乙工程隊(duì)12萬元。工程領(lǐng)導(dǎo)小組根據(jù)甲乙兩隊(duì)的投標(biāo)書測算,可有三種施工方案:

1)甲隊(duì)單獨(dú)完成此項(xiàng)工程剛好如期完工;

2)乙隊(duì)單獨(dú)完成此項(xiàng)工程要比規(guī)定工期多用3個(gè)月;

3)若甲乙兩隊(duì)合作2個(gè)月,剩下的工程由乙隊(duì)獨(dú)做也正好如期完工。

你覺得哪一種施工方案最節(jié)省工程款,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)商經(jīng)銷一種暢銷玩具,每件進(jìn)價(jià)為18元,每月銷量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系如圖中線段AB所示.

(1)當(dāng)銷售單價(jià)為多少元時(shí),該網(wǎng)商每月經(jīng)銷這種玩具能夠獲得最大銷售利潤?最大銷售利潤是多少?(銷售利潤=售價(jià)﹣進(jìn)價(jià))

(2)如果該網(wǎng)商要獲得每月不低于3500元的銷售利潤.那么至少要準(zhǔn)備多少資金進(jìn)貨這種玩具?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Ax軸上,△ABO是直角三角形,∠ABO=90°,點(diǎn)B的坐標(biāo)為(﹣1,2),將△ABO繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1O,則過A1,B兩點(diǎn)的直線解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市在端午節(jié)期間開展優(yōu)惠活動(dòng),凡購物者可以通過轉(zhuǎn)動(dòng)轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動(dòng)共有兩種方式,方式一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤甲,指針指向 A區(qū)域時(shí),所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二: 同時(shí)轉(zhuǎn)動(dòng)轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個(gè)轉(zhuǎn)盤的指針指向每個(gè)區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個(gè)轉(zhuǎn)盤中,指針指向每個(gè)區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤)

(1)若顧客選擇方式一,則享受 9 折優(yōu)惠的概率為_______;

(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知關(guān)于x的方程2x2﹣mx﹣m2=0有一個(gè)根是1,求m的值;

(2)已知關(guān)于x的方程(2x﹣m)(mx+1)=(3x+1)(mx﹣1)有一個(gè)根是0,求另一個(gè)根和m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①:要設(shè)計(jì)一幅寬,長的矩形圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為,如果要使所有彩條所占面積為原矩形圖案面積的三分之一,應(yīng)如何設(shè)計(jì)每個(gè)彩條的寬度?

由橫、豎彩條的寬度比為,可設(shè)每個(gè)橫彩條的寬為,則每個(gè)豎彩條的寬為.為更好地尋找題目中的等量關(guān)系,將橫、豎彩條分別集中,原問題轉(zhuǎn)化為如圖②的情況,得到矩形

結(jié)合以上分析完成填空:

如圖②:用含的代數(shù)式表示:________________;矩形的面積為________;列出方程并完成本題解答.

查看答案和解析>>

同步練習(xí)冊答案