【題目】以下四個命題:①全等三角形的面積相等;②最小角等于50°的三角形是銳角三角形;③等腰△ABC中,D是底邊BC上一點(diǎn),E是一腰AC上的一點(diǎn),若∠BAD=60°且AD=AE,則∠EDC=30°;④將多項(xiàng)式因式分解,其結(jié)果為-y(2x+1)(x-3).其中正確命題的序號為___________.
【答案】①②③④.
【解析】
根據(jù)全等三角形的性質(zhì),銳角三角形的性質(zhì),等腰三角形的性質(zhì)以及因式分解對上述選項(xiàng)依次進(jìn)行判定.
①根據(jù)全等三角形的性質(zhì)得全等三角形的面積相等,正確;
②最小角等于50°的三角形,則最大角不超過180°-50°-50°=80°,所以為銳角三角形,則選項(xiàng)正確;
③∵∠AED=∠C+∠EDC=∠B+∠EDC,
∴∠ADC=∠ADE+∠EDC=∠AED+∠EDC=∠B+2∠EDC,
又∵∠ADC=∠B+∠BAD=∠B+60°,
∴∠B+2∠EDC=∠B+60°,
∴∠EDC=30°,
故③正確;
④= -y(2x+1)(x-3),故選項(xiàng)正確.
答案為①②③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳市政府計劃投資1.4萬億元實(shí)施東進(jìn)戰(zhàn)略.為了解深圳市民對東進(jìn)戰(zhàn)略的關(guān)注情況.某校數(shù)學(xué)興趣小組隨機(jī)采訪部分深圳市民,對采訪情況制作了統(tǒng)計圖表的一部分如下:
關(guān)注情況 | 頻數(shù) | 頻率 |
A.高度關(guān)注 | M | 0.1 |
B.一般關(guān)注 | 100 | 0.5 |
C.不關(guān)注 | 30 | N |
D.不知道 | 50 | 0.25 |
(1)根據(jù)上述統(tǒng)計圖可得此次采訪的人數(shù)為人,m= , n=
(2)根據(jù)以上信息補(bǔ)全條形統(tǒng)計圖;
(3)根據(jù)上述采訪結(jié)果,請估計在15000名深圳市民中,高度關(guān)注東進(jìn)戰(zhàn)略的深圳市民約有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AD是∠BAC的平分線,E、F分別為AB、AC上的點(diǎn),且∠EDF+∠EAF=180°,求證DE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在拋物線上,且S△AOP=4SBOC , 求點(diǎn)P的坐標(biāo);
(3)如圖b,設(shè)點(diǎn)Q是線段AC上的一動點(diǎn),作DQ⊥x軸,交拋物線于點(diǎn)D,求線段DQ長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E、F分別在邊BC,CD上,且BE=DF,點(diǎn)P是AF的中點(diǎn),點(diǎn)Q是直線AC與EF的交點(diǎn),連接PQ,PD.
(1)求證:AC垂直平分EF;
(2)試判斷△PDQ的形狀,并加以證明;
(3)如圖2,若將△CEF繞著點(diǎn)C旋轉(zhuǎn)180°,其余條件不變,則(2)中的結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點(diǎn),我們把點(diǎn)叫做點(diǎn)的衍生點(diǎn).已知點(diǎn)的衍生點(diǎn)為,點(diǎn)的衍生點(diǎn)為,點(diǎn)的衍生點(diǎn)為這樣依次得到點(diǎn)若點(diǎn)的坐標(biāo)為,若點(diǎn)在第四象限,則范圍分別為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,點(diǎn)A,B,C在⊙O上,P為 上一點(diǎn),連接AP,CP,求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E,F(xiàn),求證:AE+AF=AD
(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com