【題目】平面直角坐標(biāo)系中,是等邊三角形,點(diǎn),點(diǎn),點(diǎn)是邊上的一個動點(diǎn)(與點(diǎn)、不重合).直線是經(jīng)過點(diǎn)的一條直線,把沿直線折疊,點(diǎn)的對應(yīng)點(diǎn)是點(diǎn).
(1)如圖①,當(dāng)時,若直線,求點(diǎn)的坐標(biāo);
(2)如圖②,當(dāng)點(diǎn)在邊上運(yùn)動時,若直線,求的面積;
(3)當(dāng)時,在直線變化過程中,求面積的最大值(直接寫出結(jié)果即可).
【答案】(1);(2);(3)
【解析】
(1)設(shè)直線交于點(diǎn),連接交于,再證明是等邊三角形;然后再根據(jù),、關(guān)于對稱,得到,;利用解直角三角形可以求得OD的長;過點(diǎn)作于點(diǎn),在中,解直角三角形可得OF和的長即可解答;
(2)連接,根據(jù)對稱的性質(zhì)和直線可得,最后根據(jù)解答即可;
(3)作O’P⊥AB時,垂足為E,然后解三角形和線段的和差求得O’E,最后在運(yùn)用三角形的面積公式求解即可.
解:(1)設(shè)直線交于點(diǎn),連接交于,
∵,
∴,,
∴是等邊三角形,
∵,,關(guān)于對稱,
∴,
∵,
∴,
過點(diǎn)作于點(diǎn),在中,可得,
,
∴點(diǎn)的坐標(biāo)為
(2)連接,
∵,關(guān)于直線對稱,
∴直線,
∵直線,
∴,
∴.
(3)當(dāng)O’P⊥AB時,垂足為E,的面積最大
如圖:作O’P⊥AB時,垂足為E
在Rt△BPE中,PA=2.∠B=60°
∴PE=PA·sin60°=
∴O’E=6+.
∴面積的最大值:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解游客對某景區(qū)的滿意度,特對游客采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查的結(jié)果分為A,B,C,D四類,其含意依次表示為“非常滿意”、“比較滿意”、“基本滿意”和“不太滿意”,劃分類別后的數(shù)據(jù)整理如表1(不完整).
(1)求表中的數(shù)據(jù)a和b.
(2)如果根據(jù)表中頻數(shù)畫扇形統(tǒng)計(jì)圖,那么類別為B的頻數(shù)所對應(yīng)的扇形圓心角是幾度?
(3)已知該景區(qū)每日游客限流3000名,估計(jì)一天的游客中類別C的游客人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)M是平行四邊形ABCD對角線AC所在直線上的一個動點(diǎn)(點(diǎn)M不與點(diǎn)A、C重合),分別過點(diǎn)A、C向直線BM作垂線,垂足分別為點(diǎn)E、F,點(diǎn)O為AC的中點(diǎn).
⑴如圖1,當(dāng)點(diǎn)M與點(diǎn)O重合時,OE與OF的數(shù)量關(guān)系是 .
⑵直線BM繞點(diǎn)B逆時針方向旋轉(zhuǎn),且∠OFE=30°.
①如圖2,當(dāng)點(diǎn)M在線段AC上時,猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?請你寫出來并加以證明;
②如圖3,當(dāng)點(diǎn)M在線段AC的延長線上時,請直接寫出線段CF、AE、OE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,將繞點(diǎn)順時針旋轉(zhuǎn),使點(diǎn)落在點(diǎn)處,得到,過點(diǎn)作平行于軸的直線交于點(diǎn),交軸于點(diǎn),直線交于點(diǎn).,.
(1)求經(jīng)過點(diǎn)、的反比例函數(shù)和直線:的解析式;
(2)過點(diǎn)作軸,求五邊形的面積;
(3)直接寫出當(dāng)時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長是9,點(diǎn)是邊上的一個動點(diǎn),點(diǎn)是邊上一點(diǎn),,連接,把正方形沿折疊,使點(diǎn),分別落在點(diǎn),處,當(dāng)點(diǎn)落在線段上時,線段的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形和正方形中,點(diǎn)在上,,,是的中點(diǎn),與交于點(diǎn)0.則的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E為BC邊上的一點(diǎn),連接AE,過點(diǎn)D作DM⊥AE,垂足為點(diǎn)M,交AB于點(diǎn)F.將△AMF沿AB翻折得到△ANF.延長DM,AN交于點(diǎn)P. 給出以下結(jié)論①;②;③;④若,則;.其中正確的是( 。
A.①②③④B.①②③C.①②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸負(fù)半軸交于點(diǎn),與軸正半軸交于點(diǎn),與軸負(fù)半軸交于點(diǎn),,,.
(1)求點(diǎn)的坐標(biāo)和拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)是上一點(diǎn)(不與點(diǎn)、重合),過點(diǎn)作軸的垂線,交拋物線于點(diǎn),交于點(diǎn),當(dāng)時,求點(diǎn)的坐標(biāo);
(3)設(shè)拋物線的對稱軸交軸于點(diǎn),在(2)的條件下,點(diǎn)是拋物線對稱軸上一點(diǎn),點(diǎn)是坐標(biāo)平面內(nèi)一點(diǎn),是否存在點(diǎn)、,使以、、、為頂點(diǎn)的四邊形是菱形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小元步行從家去火車站,走到 6 分鐘時,以同樣的速度回家取物品,然后從家乘出租車趕往火車站,結(jié)果比預(yù)計(jì)步行時間提前了3 分鐘.小元離家路程S(米)與時間t(分鐘)之間的函數(shù)圖象如圖,從家到火車站路程是( )
A.1300 米B.1400 米C.1600 米D.1500 米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com