【題目】某年級(jí)共有300名學(xué)生,為了解該年級(jí)學(xué)生A,B兩門(mén)課程的學(xué)習(xí)情況,從中隨機(jī)抽取60名學(xué)生進(jìn)行測(cè)試,將他們的成績(jī)進(jìn)行整理、描述和分析.下面給出了部分信息:
Ⅰ.A課程成績(jī)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組):
Ⅱ.A課程成績(jī)?cè)?/span>70≤x<80這一組的是:70, 71, 71,71,76,76,77,78,78, 78.5,78.5,79, 79, 79.5.
Ⅲ.A,B兩門(mén)課程成績(jī)的中位數(shù)、眾數(shù)、平均數(shù)如下表所示:
根據(jù)以上信息,回答下列問(wèn)題:
(1)寫(xiě)出表中m的值,m=________;
(2)在此次測(cè)試中,某學(xué)生的A課程成績(jī)?yōu)?/span>78分,B課程成績(jī)?yōu)?/span>71分,這名學(xué)生成績(jī)排名更靠前的課程是________(填“A”或“B”)
(3)假設(shè)該年級(jí)學(xué)生都參加此次測(cè)試,估計(jì)A課程成績(jī)超過(guò)該課程平均分的人數(shù).
【答案】(1)78.5;(2)B;(3)180人
【解析】
(1)先確定A課程的中位數(shù)落在70≤x<80這一組,再由此分組具體數(shù)據(jù)得出第30、31個(gè)數(shù)據(jù)的平均數(shù)即可;
(2)根據(jù)兩個(gè)課程的中位數(shù)定義解答可得;
(3)用總?cè)藬?shù)乘以樣本中超過(guò)75.8分的人數(shù)所占比例可得.
(1)∵A課程總?cè)藬?shù)為2+6+12+14+18+8=60,
∴中位數(shù)為第30、31個(gè)數(shù)據(jù)的平均數(shù),而第30、31個(gè)數(shù)據(jù)均在70≤x<80這一組,
∴中位數(shù)在70≤x<80這一組,
∵70≤x<80這一組的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,
∴A課程的中位數(shù)為,即m=78.75;
故答案為:78.75
(2)∵該學(xué)生的A課程成績(jī)小于A課程的中位數(shù),而B課程成績(jī)大于B課程的中位數(shù),
∴這名學(xué)生成績(jī)排名更靠前的課程是B,
故答案為:B
(3)估計(jì)A課程成績(jī)超過(guò)75.8分的人數(shù)為300×=180人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC于點(diǎn)F,連接DF,下列四個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF.其中正確的結(jié)論有( )個(gè)
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰三角形PAD中,PA=PD,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)P,點(diǎn)C是⊙O上一點(diǎn),連接AC,PC,PC交AB于點(diǎn)E,已知∠ACP=60°.
(1)求證:PD是⊙O的切線(xiàn);
(2)連接OP,PB,BC,OC,若⊙O的直徑是4,則:
①當(dāng)DE= ,四邊形APBC是矩形;
②當(dāng)DE= ,四邊形OPBC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知…是軸上的點(diǎn),且…,分別過(guò)點(diǎn)…作軸的垂線(xiàn)交反比例函數(shù)的圖象于點(diǎn)…,過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn)……記的面積為,的面積為……的面積為,則…等于_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】讀下面的題目及分析過(guò)程,并按要求進(jìn)行證明。已知:如圖,E是BC的中點(diǎn),點(diǎn)A在DB上,且
∠BAE=∠CDE,求證:AB=CD
分析:證明兩條線(xiàn)段相等,常用的一般方法是應(yīng)用全等三角形或等腰三角形的判定和性質(zhì),觀察本題中要證明的兩條線(xiàn)段,它們不在同一個(gè)三角形中,且它們分別所在的兩個(gè)三角形也不全等。因此,要證明AB=CD,必須添加適當(dāng)?shù)妮o助線(xiàn),構(gòu)造全等三角形或等腰三角形,F(xiàn)給出如下三種添加輔助線(xiàn)的方法,請(qǐng)任意選擇其中兩種對(duì)原題進(jìn)行證明。
圖(1):延長(zhǎng)DE到F使得EF=DE
圖(2):作CG⊥DE于G,BF⊥DE于F交DE的延長(zhǎng)線(xiàn)于F
圖(3):過(guò)C點(diǎn)作CF∥AB交DE的延長(zhǎng)線(xiàn)于F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(-2,0),B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線(xiàn)上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為.連接AC,BC,DB,DC,
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)△BCD的面積等于△AOC的面積的時(shí),求的值;
(3)在(2)的條件下,若點(diǎn)M是軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是拋物線(xiàn)上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過(guò)點(diǎn)A作AD∥BC,與∠ABC的平分線(xiàn)交于點(diǎn)D,BD與AC交于點(diǎn)E,與⊙O交于點(diǎn)F.
(1)求∠DAF的度數(shù);
(2)求證:AE2=EFED;
(3)求證:AD是⊙O的切線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為等邊△ABC內(nèi)一點(diǎn),∠APC=150°,且∠APD=30°,AP=6,CP=3,DP=7,則BD的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)(,,為常數(shù),且)中的與的部分對(duì)應(yīng)值如下表:
以下結(jié)論:
①二次函數(shù)有最小值為;
②當(dāng)時(shí),隨的增大而增大;
③二次函數(shù)的圖象與軸只有一個(gè)交點(diǎn);
④當(dāng)時(shí),.
其中正確的結(jié)論有( )個(gè)
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com