【題目】下圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果. 隨著實(shí)驗(yàn)次數(shù)的增加,釘尖向上的頻率總在一常數(shù)附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)釘尖向上的概率是_________

【答案】0.618

【解析】分析:觀察圖象可得: 隨著實(shí)驗(yàn)次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,根據(jù)頻率可估計(jì)概率.

詳解:因?yàn)殡S著實(shí)驗(yàn)次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動(dòng),

所以釘尖向上的頻率約為0.618,可估計(jì)概率是0.618,故答案為:0.618.

點(diǎn)睛:本題主要考查用頻率估算概率,解決本題的關(guān)鍵要明確在隨著實(shí)驗(yàn)次數(shù)的增加,事件的發(fā)生頻率總在一常數(shù)附近擺動(dòng),顯示出一定的穩(wěn)定性,可以用頻率估計(jì)的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,, ,的中點(diǎn),連接并延長,交于點(diǎn),恰好是的中點(diǎn).

(1)求的值;

(2)若,求證:四邊形是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行于x軸的直線分別與一次函數(shù)y=-x+3和二次函數(shù)y= x2 -2x-3的圖象交于A(x1,y1),B(x2,y2),C(x3,y3)三點(diǎn),且x1<x2<x3,設(shè)m= x1+x2+x3,則m的取值范圍是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三個(gè)頂點(diǎn)的坐標(biāo)分別為,,

)請(qǐng)畫出將向左平移個(gè)單位長度后得到的圖形

)請(qǐng)畫出關(guān)于原點(diǎn)成中心對(duì)稱的圖形

)在軸上找一點(diǎn),使的值最小,請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于函數(shù)的四個(gè)命題:①當(dāng)時(shí), 有最小值10;為任意實(shí)數(shù), 時(shí)的函數(shù)值大于時(shí)的函數(shù)值;③若,且是整數(shù),當(dāng)時(shí), 的整數(shù)值有個(gè);④若函數(shù)圖象過點(diǎn),其中, ,則.其中真命題的序號(hào)是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)興趣小組活動(dòng)中,小明進(jìn)行數(shù)學(xué)探究活動(dòng).將邊長為2的正方形ABCD與邊長為3的正方形AEFG按圖1位置放置,ADAE在同一條直線上,ABAG在同一條直線上.

(1)小明發(fā)現(xiàn)DG=BEDGBE,請(qǐng)你給出證明.

(2)如圖2,小明將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時(shí),請(qǐng)你幫他求出此時(shí)△ADG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,DBC異側(cè),AB∥CD,AE=DF,∠A=∠D.

(1)求證:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在長方形紙片ABCD,AB=mAD,其中m1,將它沿EF折疊(點(diǎn)E.F分別在邊AB、CD),使點(diǎn)B落在AD邊上的點(diǎn)M,點(diǎn)C落在點(diǎn)N,MNCD相交于點(diǎn)P,連接EP.設(shè),其中0<n1.

(1)如圖2,當(dāng)n=1(M點(diǎn)與D點(diǎn)重合),求證:四邊形BEDF為菱形;

(2)如圖3,當(dāng)(MAD的中點(diǎn)),m的值發(fā)生變化時(shí),求證:EP=AE+DP;

(3)如圖1,當(dāng)m=2(AB=2AD),n的值發(fā)生變化時(shí),的值是否發(fā)生變化?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點(diǎn)P是⊙O外一點(diǎn),PA切⊙O于點(diǎn)A,且PA=PB.

(1)求證:PB是⊙O的切線;

(2)已知PA=2,BC=2.求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案