【題目】為發(fā)展學生的核心素養(yǎng),培養(yǎng)學生的綜合能力,某學校計劃開設四門選修課:樂器、舞蹈、繪畫、書法.學校采取隨機抽樣的方法進行問卷調查(每個被調查的學生必須選擇而且只能選擇其中一門).對調查結果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給信息解答下列問題:
(1)本次調查的學生共有 人,在扇形統(tǒng)計圖中,m的值是 ;
(2)將條形統(tǒng)計圖補充完整;
(3)在被調查的學生中,選修書法的有2名女同學,其余為男同學,現要從中隨機抽取2名同學代表學校參加某社區(qū)組織的書法活動,請寫出所抽取的2名同學恰好是1名男同學和1名女同學的概率.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y1=ax2+2ax+1與軸有且僅有一個公共點A,經過點A的直線y2=kx+b交該拋物線于點B,交y軸于點C,且點C是線段AB的中點.
(1)求的值;
(2)求直線AB對應的函數解析式;
(3)直接寫出當y1 ≥y2 時,的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC中,AB=AC.
(1)用尺規(guī)作出圓心在直線BC上,且過A、C兩點的⊙O;(注:保留作圖痕跡,標出點O,并寫出作法)
(2)若∠B=30°,求證:AB與(1)中所作⊙O相切.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于O點,且BE=BF,∠BEF=2∠BAC。
(1)求證:OE=OF;
(2)若BC=,求AB的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形網格(邊長為1的小正方形組成的網格紙,正方形的頂點稱為格點)是我們在初中階段常用的工具,利用它可以解決很多問題.
(1)如圖①中,△ABC是格點三角形(三個頂點為格點),則它的面積為 ;
(2)如圖②,在4×4網格中作出以A為頂點,且面積最大的格點正方形(四個頂點均為格點);
(3)人們發(fā)現,記格點多邊形(頂點均為格點)內的格點數為a,邊界上的格點數為b,則格點多邊形的面積可表示為S=ma+nb-1,其中m,n為常數.試確定m,n的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】八年級6班的一個互助學習小組組長收集并整理了組員們討論如下問題時所需的條件:如圖所示,在四邊形ABCD中,點E、F分別在邊BC、AD上,____,求證:四邊形AECF是平行四邊形. 你能在橫線上填上最少且簡捷的條件使結論成立嗎?
條件分別是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四邊形ABCD是平行四邊形.
其中A、B、C、D四位同學所填條件符合題目要求的是( 。
A. ①②③④B. ①②③C. ①④D. ④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點O為直線AB上一點,過點O作射線OC,使∠BOC=65°,將一直角三角板的直角頂點放在點O處.
(1)如圖①,將三角板MON的一邊ON與射線OB重合時,則∠MOC= ;
(2)如圖②,將三角板MON繞點O逆時針旋轉一定角度,此時OC是∠MOB的角平分線,求旋轉角∠BON和∠CON的度數;
(3)將三角板MON繞點O逆時針旋轉至圖③時,∠NOC=∠AOM,求∠NOB的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】函數 yl= x ( x ≥0 ) , ( x > 0 )的圖象如圖所示,則結論: ① 兩函數圖象的交點A的坐標為(3 ,3 ) ② 當 x > 3 時, ③ 當 x =1時, BC = 8
④ 當 x 逐漸增大時, yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結論的序號是_ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O是菱形ABCD的對角線AC,BD的交點,E,F分別是OA,OC的中點.下列結論:①S△ADE=S△EOD;②四邊形BFDE也是菱形;③△DEF是軸對稱圖形;④∠ADE=∠EDO;⑤四邊形ABCD面積為EF×BD.其中正確的結論有( 。
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com