【題目】如圖,為測量學校圍墻外直立電線桿AB的高度,小亮在操場上點C處直立高3m的竹竿CD,然后退到點E處,此時恰好看到竹竿頂端D與電線桿頂端B重合;小亮又在點C1處直立高3m的竹竿C1D1 , 然后退到點E1處,此時恰好看到竹竿頂端D1與電線桿頂端B重合.小亮的眼睛離地面高度EF=1.5m,量得CE=2m,EC1=6m,C1E1=3m.
(1)△FDM∽△ , △F1D1N∽△
(2)求電線桿AB的高度.
【答案】
(1)FBG;F1BG
(2)解:根據(jù)題意,∵D1C1∥BA,
∴△F1D1N∽△F1BG.
∴ .
∵DC∥BA,
∴△FDM∽△FBG.
∴ .
∵D1N=DM,
∴ = ,
即 .
∴GM=16m.
∵ ,
∴ .
∴BG=13.5m.
∴AB=BG+GA=15(m).
答:電線桿AB的高度為15m
【解析】解:(1)∵DC⊥AE D1C1⊥AE BA⊥AE ∴DC∥D1C1∥BA,
∴△FDM∽△FBG,△F1D1N∽△F1BG.
【考點精析】掌握相似三角形的應用是解答本題的根本,需要知道測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC、BD相交于點O,△ABO≌△ADO.下列結(jié)論:
①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.
其中所有正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】尤秀同學遇到了這樣一個問題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設BC=a,AC=b,AB=c.
求證:a2+b2=5c2
該同學仔細分析后,得到如下解題思路:
先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故 ,設PF=m,PE=n,用m,n把PA,PB分別表示出來,再在Rt△APE,Rt△BPF中利用勾股定理計算,消去m,n即可得證
(1)請你根據(jù)以上解題思路幫尤秀同學寫出證明過程.
(2)利用題中的結(jié)論,解答下列問題:在邊長為3的菱形ABCD中,O為對角線AC,BD的交點,E,F(xiàn)分別為線段AO,DO的中點,連接BE,CF并延長交于點M,BM,CM分別交AD于點G,H,如圖2所示,求MG2+MH2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購買計劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請設計購買方案,使總費用最低,并求出最低費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張矩形紙片ABCD沿EF折疊,使頂點C,D分別落在點C′,D′處,C′E交AF于點G,若∠CEF=70°,則∠GFD′=°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個數(shù)值轉(zhuǎn)換器.
(1)當輸入x=25時,求輸出的y的值;
(2)是否存在輸入x的值后,始終輸不出y的值?如果存在,請直接寫出所有滿足要求的x值;如果不存在,請說明理由;
(3)輸入一個兩位數(shù)x,恰好經(jīng)過三次取算術(shù)平方根才能輸出無理數(shù)y,則x=________(只填一個即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一居民樓底部B與山腳P位于同一水平線上,小李在P處測得居民樓頂A的仰角為60°,然后他從P處沿坡角為45°的山坡向上走到C處,這時,PC=30m,點C與點A在同一水平線上,A、B、P、C在同一平面內(nèi).
(1)求居民樓AB的高度;
(2)求C、A之間的距離.
(精確到0.1m,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.45)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com