【題目】問題探究題
問題背景:如圖1,在中,、、三邊的長分別為,,,求的面積.
(1)問題解決:小明在計算這個三角形面積的時候,采用了傳統(tǒng)的三角形面積計算公式的方法計算,即求出三角形的一條高.如圖2,他過點作于點,為了求出高的長,他設(shè),則,根據(jù)勾股定理,可列方程:_______________________,該方程解得__________,再根據(jù)股定理求出高的長,從而計算的面積(注:此小問不用計算的長和的面積);
(2)思維拓展:小輝同學在思考這個問題時,覺得小明的方法在計算上比較復雜,他先建立了一個正方形網(wǎng)格(每個正方形網(wǎng)格的邊長是1),再在網(wǎng)格中畫出了格點(即的三個頂點都在正方形的網(wǎng)格線的交點處),如圖3,這樣就不用求的高,直接借助網(wǎng)格就能計算的面積為__________(直接寫出的面積即可);
(3)方法應(yīng)用:我們將小輝的方法稱為“構(gòu)圖法”,若的三邊長分別為,,(),請在圖4的網(wǎng)格中(網(wǎng)格中每個小正方形的邊長為)畫出相應(yīng)的,并求出它的面積;
(4)探索創(chuàng)新:若中有兩邊長為,,且的面積為2,請在圖5和備用圖的正方形網(wǎng)格中畫出所有可能情況(全等三角形視為同一種情況),則的第三邊長為______________(直接寫出所有可能的情況).
【答案】(1),;(2)5.5;(3)作圖見解析,S△ABC=5;(4)作圖見解析,4或.
【解析】
(1)在Rt△ABD中,BD2+AD2=AB2,在Rt△BCD中,BD2+CD2=BC2,由此可得,即可得出方程求解;
(2)利用矩形面積減去三個直角三角形的面積即可得△ABC的面積;
(3)利用,,,即可畫出三角形,并按照(2)的方法求面積;
(4)先畫出符合條件的圖形,再根據(jù)勾股定理求出第三邊長.
(1)∵在Rt△ABD中,BD2+AD2=AB2,在Rt△BCD中,BD2+CD2=BC2,
∴,
又∵,,,
∴
解得
故答案為:,;
(2)S△ABC=
故答案為:5.5;
(3)如圖所示,,,,
S△ABC=
(4)如圖所示,符合題意的三角形有2個,△ABC與△ABC',
其中,AB=,AC=BC'=
∴第三邊長BC=4或AC'=
故答案為:4或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊的中點,分別過B、C做射線AD的垂線,垂足分別為E、F,連接BF、CE.
(1)求證:四邊形BECF是平行四邊形;
(2)我們知道S△ABD=S△ACD,若AF=FD,在不添加輔助線的條件下,直接寫出與△ABD、△ACD面積相等的所有三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某“數(shù)學興趣小組”根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整:
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應(yīng)數(shù)值如下表:
x | … | -3 | - | -2 | -1 | 0 | 1 | 2 | 3 | … | |
y | … | -2 | - | m | 2 | 1 | 2 | 1 | - | -2 | … |
其中m=____________;
(2)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應(yīng)值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(3)根據(jù)函數(shù)圖象
①寫出該函數(shù)的一條性質(zhì)_______________;
②直線經(jīng)過點(-l,2),若關(guān)于x的方程有4個互不相等的實數(shù)根,則b的取值范圍是__________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】人類的血型一般可分為A,B,AB,O型四種,寧波市中心血戰(zhàn)2015年共有8萬人無償獻血,血戰(zhàn)統(tǒng)計人員由電腦隨機選出20人,血型分別是:
O,A,O,B,O,A,A,AB,A,O,O,B,AB,B,O,A,O,B,O,A.
(1)請設(shè)計統(tǒng)計表分類統(tǒng)計這20人各類血型人數(shù);
(2)若每位獻血者平均獻血200毫升,一年中寧波市各醫(yī)院O型血用血量約為6×106毫米,請你估計2015年這8萬人所獻的O型血是否夠用?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸、軸分別交于點和點,直線過點且與軸交于點,將直線向下平移4個單位得到直線,已知直線剛好過點,且與軸相交于點.
(1)求直線的解析式;
(2)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知長方形紙片ABCD中,AB=10,AD=8,點E在AD邊上,將△ABE沿BE折疊后,點A正好落在CD邊上的點F處.
(1)求DF的長;
(2)求△BEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,直線經(jīng)過點,且于點,于點.
(1)當直線繞點旋轉(zhuǎn)到圖1的位置時,求證:
①;
②.
(2)當直線繞點旋轉(zhuǎn)到圖2的位置時,第(1)問中的兩個結(jié)論是否還成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 在平面直角坐標系xOy中,O為坐標原點,四邊形OABC的頂點A在x軸的正半軸上,OA=4,OC=2,點P,點Q分別是邊BC,邊AB上的點,連結(jié)AC,PQ,點B1是點B關(guān)于PQ的對稱點.
(1)若四邊形OABC為長方形,如圖1,
①求點B的坐標;
②若BQ=BP,且點B1落在AC上,求點B1的坐標;
(2)若四邊形OABC為平行四邊形,如圖2,且OC⊥AC,過點B1作B1F∥x軸,與對角線AC,邊OC分別交于點E,點F.若B1E:B1F=1:3,點B1的橫坐標為m,求點B1的縱坐標(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:其中正確的有_____.(填寫序號)
①若x>y,則a2x>a2y;
②若(a﹣1)x>a﹣1,則x>1;
③有一個角是60°的三角形是等邊三角形;
④旋轉(zhuǎn)不改變圖形的形狀和大小
⑤以7、24、25為三邊長的三角形是直角三角形;
⑥真命題的逆命題也是真命題.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com