【題目】如圖,ABCADE中,AB=AD,BC=DE,∠B=D,邊AD與邊BC交于點P(不與點B、C重合),點BEAD異側(cè),IAPC的內(nèi)心(三條角平線的交點)

1)求證:∠BAD=CAE

2)當∠BAC=90°,

①若AB=16,BC=20時,求線段PD的最大值;

②若∠B=36°,∠AIC的取值范圍為m°<AIC<n°,求m、n的值.

【答案】1)見解析;(2)①;②,

【解析】

1)運用已知條件,依據(jù)SAS可證,從而可得,減去重合部分,即得所求證;

2)①,,當時,最小,=最大,運用等面積法求出,即可得出結(jié)論;

②用三角形內(nèi)角和定理求出,運用內(nèi)心,求出,設(shè),則可用α表示,根據(jù)三角形內(nèi)角和定理,∠AIC也可用α表示,由于,所以∠AIC的取值范圍也能求出來.

1)證明:

,

SAS

2)①中,,

由勾股定理,得

,而

時,最小,最大,

此時,,即

解得,

的最大值

②如圖,,,則

的內(nèi)心,

、分別平分,

,,

,,

,

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(2,4),B(1,1),C(4,3).

(1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標;

(2)請畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后的△A2BC2;

(3)求出(2)C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑長(結(jié)果保留根號和π);

(4)求出(2)A2BC2的面積是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展以感恩教育為主題的藝術(shù)活動,舉辦了四個項目的比賽,它們分別是演講、唱歌、書法、繪畫。要求每位同學必須參加,且限報一項活動。以九年級(1)班為樣本進行統(tǒng)計,并將統(tǒng)計結(jié)果繪成如圖1、圖2所示的兩幅統(tǒng)計圖。請你結(jié)合圖示所給出的信息解答下列問題。

(1)求出參加繪畫比賽的學生人數(shù)占全班總?cè)藬?shù)的百分比?

(2)求出扇形統(tǒng)計圖中參加書法比賽的學生所在扇形圓心角的度數(shù)?

(3)若該校九年級學生有600人,請你估計這次藝術(shù)活動中,參加演講和唱歌的學生各有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知長方形紙片ABCD中,AB=10,AD=8,點EAD邊上,將ABE沿BE折疊后,點A正好落在CD邊上的點F處.

1)求DF的長;

2)求BEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,地面上小山的兩側(cè)有兩地,為了測量兩地的距離,讓一熱氣球從小山西側(cè)地出發(fā)沿與角的方向,以每分鐘的速度直線飛行,分鐘后到達處,此時熱氣球上的人測得角,請你用測得的數(shù)據(jù)求兩地的距離長.(結(jié)果用含非特殊角的三角函數(shù)和根式表示即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,拋物線的頂點D的坐標為(1,-4),且與y軸交于點

C0,3

求該函數(shù)的關(guān)系式;

求改拋物線與x軸的交點A,B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司為了了解員工每人所創(chuàng)年利潤情況,公司從各部抽取部分員工對每年所創(chuàng)年利潤情況進行統(tǒng)計,并繪制如圖1,圖2統(tǒng)計圖.

(1)求抽取員工總?cè)藬?shù),并將圖補充完整;

(2)每人所創(chuàng)年利潤的眾數(shù)是 ,每人所創(chuàng)年利潤的中位數(shù)是 ,平均數(shù)是 ;

(3)若每人創(chuàng)造年利潤10萬元及(含10萬元)以上為優(yōu)秀員工,在公司1200員工中有多少可以評為優(yōu)秀員工?

查看答案和解析>>

同步練習冊答案