【題目】如圖,CAB的中點,∠A=∠BCE,請?zhí)砑右粋條件,使△ACD≌△CBE,這個添加的條件可以是_____.(只需寫一個,不添加輔助線)

【答案】ADCE或∠B=∠ACD(答案不唯一)

【解析】

要使△ACD≌△CBE,已知AC=CB,∠A=BCE,則可以添加一個邊從而利用SAS來判定其全等,或添加一個夾角從而利用ASA來判定其全等.

解:添加ADCEBACD.

CAB的中點,

AC=BC.

若添加ADCE,

ACDCBE中,

ADCE

ABCE,

AC=BC,

ACD≌△CBE

若添加BACD,

ACDCBE中,

BACD,

ADCE,

ABCE,

ACD≌△CBE.

故答案為:ADCEBACD(答案不唯一).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在RtABC中,∠ACB90°,ABAC,點D在直線AB上,連接CD,在CD的右側(cè)作CECD,CDCE,

1)如圖1,①點DAB邊上,直接寫出線段BE和線段AD的關(guān)系;

2)如圖2,點DB右側(cè),BD1BE5,求CE的長.

3)拓展延伸

如圖3,∠DCE=∠DBE90,CDCE,BC,BE1,請直接寫出線段EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩名同學(xué)做摸球游戲,他們把三個分別標(biāo)有1,23的大小和形狀完全相同的小球放在一個不透明的口袋中.

1)求從袋中隨機(jī)摸出一球,標(biāo)號是1的概率;

2)從袋中隨機(jī)摸出一球后放回,搖勻后再隨機(jī)摸出一球,若兩次摸出的球的標(biāo)號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標(biāo)號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)動會中裁判員使用的某品牌遮陽傘如圖1所示,圖2是其剖面圖,若AG平分∠BAC與∠EDF,ABED,求證:ACDF

請將橫線上的證明過程和依據(jù)的定理補(bǔ)充完整.

證明:∵ABDE,

∴∠   =∠      

AG平分∠BACAG平分∠EDF(已知)

∴∠DAC=∠DAB,∠GDF=∠GDE   ).

∴∠DAC=∠GDF   ).

ACDF   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點 M,N;②作直線 MN AB 于點 D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為

A.90°B.95°C.105°D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,的中點,連接并延長交的延長線于點,連接平分.下列結(jié)論:①;②垂直平分;③;④;其中正確的是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某古城幾個地名的平面示意圖,已知民俗街和博物館的坐標(biāo)分別為點,,請仔細(xì)觀察示意圖完成以下問題.

1)請根據(jù)題意在圖上建立平面直角坐標(biāo)系.

2)在(1)的條件下,寫出圖上BD兩地點的坐標(biāo).

3)某周末甲,乙,丙,丁等4位同學(xué)分別到古城樓,民俗街,文化廣場,博物館四個地點游玩,且每人只去一個地點,老師打電話問了趙,錢,孫,李等四位同學(xué),趙說:甲在民俗街,乙在文化廣場;錢說:丙在博物館,乙在民俗街;孫說:丁在民俗街,丙在文化廣場;李說:丁在古城樓,乙在文化廣場.若知道趙,錢,孫,李每人都只說對了一半,則丙同學(xué)游玩的地點是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙OAB于點D點,連接CD

1)求證:∠A=∠BCD;

2)若M為線段BC上一點,試問當(dāng)點M在什么位置時,直線DM⊙O相切?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案