【題目】如圖是一個漢字“互”字,其中,ABCD,∠1=2,∠MGH=MEF.

求證:∠MEF=GHN.

證明:∵ ABCD(已知)

∴∠1=3

又∵∠1=2(已知)

∴∠2=3

MEHN

∴∠MGH= ( )( )

又∵∠MGH=MEF (已知)

∴∠MEF=GHN

【答案】兩直線平行,內(nèi)錯角相等; 等量代換; 同位角相等,兩直線平行; GHN; 兩直線平行,內(nèi)錯角相等; 等量代換.

【解析】

ABCD.可得∠1=3,等量代換易得∠2=3,由平行線的判定定理可得MEHN,易得∠MGH=GHN,等量代換易得結(jié)論.

證明:∵ ABCD(已知)

∴∠1=3(兩直線平行,內(nèi)錯角相等)

又∵∠1=2(已知)

∴∠2=3(等量代換)

MEHN (同位角相等,兩直線平行)

∴∠MGH=(GHN)(兩直線平行,內(nèi)錯角相等)

又∵∠MGH=MEF (已知)

∴∠MEF=GHN(等量代換)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形中,,點邊的中點,點與點關(guān)于對稱,連接、,下列結(jié)論:;;;,其中正確的是(

A. ①②B. ①②③C. ①②④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,如果對角線ACBD相交并且相等,那么我們把這樣的四邊形稱為等角線四邊形.

(1)①在“平行四邊形、矩形、菱形”中, 一定是等角線四邊形(填寫圖形名稱);

M、N、P、Q分別是等角線四邊形ABCD四邊AB、BC、CDDA的中點,當(dāng)對角線ACBD還要滿足 時,四邊形MNPQ是正方形.

(2)如圖2,已知ABC中,ABC=90°,AB=4,BC=3,D為平面內(nèi)一點.

若四邊形ABCD是等角線四邊形,且AD=BD,則四邊形ABCD的面積是 ;

設(shè)點E是以C為圓心,1為半徑的圓上的動點,若四邊形ABED是等角線四邊形,寫出四邊形ABED面積的最大值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖,線段、折線分別表示兩車離甲地的距離(單位:千米)與時間(單位:小時)之間的函數(shù)關(guān)系.

1)線段與折線中,______(填線段或折線)表示貨車離甲地的距離與時間之間的函數(shù)關(guān)系.

2)求線段的函數(shù)關(guān)系式(標(biāo)出自變量取值范圍);

3)貨車出發(fā)多長時間兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,長方形的三個頂點的坐標(biāo)為,,,且軸,點是長方形內(nèi)一點(不含邊界).

1)求,的取值范圍.

2)若將點向左移動8個單位,再向上移動2個單位到點,若點恰好與點關(guān)于軸對稱,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角中,,的中點,將折疊,使點與點重合,為折痕,則的值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y軸交于點A(0,﹣4),與x軸相交于B(﹣2,0)、C(4,0)兩點,O為坐標(biāo)原點.

(1)求拋物線的解析式;

(2)設(shè)點Ex軸上,∠OEA+OAB=ACB,求BE的長;

(3)如圖2,將拋物線y=ax2+bx+c向右平移nn>0)個單位得到的新拋物線與x軸交于M、NMN左側(cè)),Px軸下方的新拋物線上任意一點,連PM、PN,過PPQMNQ,是否為定值?請說明理由.

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為3的正方形ABCD中,點E在射線BC上,且BE=2CE,連接AE交射線DC于點F,若ABE沿直線AE翻折,點B落在點B1處.

(1)如圖1,若點E在線段BC上,求CF的長;

(2)求sinDAB1的值;

(3)如果題設(shè)中“BE=2CE”改為=x”,其它條件都不變,試寫出ABE翻折后與正方形ABCD公共部分的面積yx的關(guān)系式及自變量x的取值范圍(只要寫出結(jié)論,不需寫出解題過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E、F分別為菱形ABCDAD、CD的中點.

1)求證:BE=BF;

2)當(dāng)△BEF為等邊三角形時,求證:∠D=2A.

查看答案和解析>>

同步練習(xí)冊答案