【題目】為全面貫徹黨的教育方針,堅(jiān)持“健康第一的教育理念,促進(jìn)學(xué)生健康成長,提高體質(zhì)健康水平,成都市調(diào)整體育中考實(shí)施方案:分值增加至60,男1000(女80米)必考,足球、籃球、排球“三選一”……從2019年秋季新入學(xué)的七年級起開始實(shí)施,某1學(xué)為了解七年級學(xué)生對三大球類運(yùn)動的喜愛情況,從七年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查問卷,通過分析整理繪制了如下兩幅統(tǒng)計(jì)圖。請根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:

1)求參與調(diào)查的學(xué)生中,喜愛排球運(yùn)動的學(xué)生人數(shù),并補(bǔ)全條形圖

2)若該中學(xué)七年級共有400名學(xué)生,請你估計(jì)該中學(xué)七年級學(xué)生中喜愛籃球運(yùn)動的學(xué)生有多少名?

3)若從喜愛足球運(yùn)動的2名男生和2名女生中隨機(jī)抽取2名學(xué)生,確定為該校足球運(yùn)動員的重點(diǎn)培養(yǎng)對象,請用列表法或畫樹狀圖的方法求抽取的兩名學(xué)生為一名男生和一名女生的概率.

【答案】121,圖形見解析;(2180;(3

【解析】

1)先根據(jù)足球人數(shù)及其百分比求得總?cè)藬?shù),再用總?cè)藬?shù)乘以排球人數(shù)占總?cè)藬?shù)的百分比可得排球人數(shù),即可補(bǔ)全圖形;

2)根據(jù)樣本估計(jì)總體,先求出喜愛籃球運(yùn)動人數(shù)的百分比,然后用400乘以籃球人數(shù)占百分比,即可得到喜愛籃球運(yùn)動人數(shù);

3)畫樹狀圖得出所有等可能的情況數(shù),找出1名男生和1名女生的情況數(shù),根據(jù)概率公式即可得出所求概率.

解:(1(人),

(人).

所以,參與調(diào)查的學(xué)生中,喜愛排球運(yùn)動的學(xué)生有21.

補(bǔ)全條形圖如下:

2(人).

所以,該中學(xué)七年級學(xué)生中,喜愛籃球運(yùn)動的學(xué)生有180.

3

共有12種等可能情況,(男1,男2)、(男1,女1)、(男1,女2)、(男2,男1)、(男2,女1)、(男2,女2)、(女1,男1)、(女1,男2)、(女1,女2)、(女2,男1)、(女2,男2)、(女2,女1),其中,1名男生和1名女生有8.

所以,抽到1名男生和1名女生的概率 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)市場調(diào)查,發(fā)現(xiàn)進(jìn)價(jià)為40元的臺燈每月的銷售量y(臺)與售價(jià)x(元)的相關(guān)信息如下:

售價(jià)x(元)

50

60

70

80

……

銷售量y(臺)

200

180

160

140

……

1)試用你學(xué)過的函數(shù)來描述yx的關(guān)系,這個(gè)函數(shù)可以是  函數(shù),求這個(gè)函數(shù)關(guān)系式;

2)售價(jià)為多少元時(shí),當(dāng)月的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與雙曲線x>0)交于點(diǎn)

1)求a,k的值;

2)已知直線過點(diǎn)且平行于直線,點(diǎn)Pmn)(m>3)是直線上一動點(diǎn),過點(diǎn)P分別作軸、軸的平行線,交雙曲線x>0)于點(diǎn)、,雙曲線在點(diǎn)M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).

①當(dāng)時(shí),直接寫出區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù);②若區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù)不超過8個(gè),結(jié)合圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的周長為12,EF,GH為矩形ABCD的各邊中點(diǎn),ABx四邊形EFGH的面積為y.

(1)請直接寫出yx之間的函數(shù)關(guān)系式;

(2)根據(jù)(1)中的函數(shù)關(guān)系式計(jì)算當(dāng)x為何值時(shí),y最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,D是線段AC上一點(diǎn)(不與A,C重合),連接BD,將沿AB翻折,使點(diǎn)D落在點(diǎn)E處,延長BDEA的延長線交于點(diǎn)F,若是直角三角形,則AF的長為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC6,將矩形ABCDB逆時(shí)針旋轉(zhuǎn)30°后得到矩形GBEF,延長DAFG于點(diǎn)H,則GH的長為(  )

A.84B.4C.34D.63

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yx2+bx+cx軸于A(﹣1,0),B3,0)兩點(diǎn),交y軸于點(diǎn)C

1)如圖1,求拋物線的解析式;

2)如圖2,點(diǎn)P是第一象限拋物線上的一個(gè)動點(diǎn),連接CPx軸于點(diǎn)E,過點(diǎn)PPKx軸交拋物線于點(diǎn)K,交y軸于點(diǎn)N,連接AN、ENAC,設(shè)點(diǎn)P的橫坐標(biāo)為t,四邊形ACEN的面積為S,求St之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

3)如圖3,在(2)的條件下,點(diǎn)FPC中點(diǎn),過點(diǎn)KPC的垂線與過點(diǎn)F平行于x軸的直線交于點(diǎn)HKHCP,點(diǎn)Q為第一象限內(nèi)直線KP下方拋物線上一點(diǎn),連接KQy軸于點(diǎn)G,點(diǎn)MKP上一點(diǎn),連接MF、KF,若∠MFK=∠PKQ,MPAE+GN,求點(diǎn)Q坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ABCD,對角線AC、BD交于點(diǎn)E,點(diǎn)F在邊AB上,連接CF交線段BE于點(diǎn)G,CG2=GEGD.

(1)求證:ACF=ABD;

(2)連接EF,求證:EFCG=EGCB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副三角板中含有30°角的三角板的直角頂點(diǎn)落在等腰直角三角形的斜邊的中點(diǎn)D處,并繞點(diǎn)D旋轉(zhuǎn),兩直角三角板的兩直角邊分別交于點(diǎn)E,F(xiàn),下列結(jié)論:①DE=DF;②S四邊形AEDF=SBED+SCFD;③SABC=EF2;④EF2=BE2+CF2,其中正確的序號是_____

查看答案和解析>>

同步練習(xí)冊答案