【題目】為創(chuàng)建“國(guó)家衛(wèi)生城市”,進(jìn)一步優(yōu)化市中心城區(qū)的環(huán)境,德州市政府?dāng)M對(duì)部分路段的人行道地磚、花池、排水管道等公用設(shè)施全面更新改造,根據(jù)市政建設(shè)的需要,須在60天內(nèi)完成工程.現(xiàn)在甲、乙兩個(gè)工程隊(duì)有能力承包這個(gè)工程.經(jīng)調(diào)查知道:乙隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間比甲隊(duì)單獨(dú)完成多用25天,甲、乙兩隊(duì)合作完成工程需要30天,甲隊(duì)每天的工程費(fèi)用2500元,乙隊(duì)每天的工程費(fèi)用2000元.
(1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成各需多少天?
(2)請(qǐng)你設(shè)計(jì)一種符合要求的施工方案,并求出所需的工程費(fèi)用.
【答案】解:(1)設(shè)甲工程隊(duì)單獨(dú)完成該工程需x天,則乙工程隊(duì)單獨(dú)完成該工程需(x+25)天.(1分)
根據(jù)題意得:.(3分)
方程兩邊同乘以x(x+25),得30(x+25)+30x=x(x+25),
即x2﹣35x﹣750=0.
解之,得x1=50,x2=﹣15.(5分)
經(jīng)檢驗(yàn),x1=50,x2=﹣15都是原方程的解.
但x2=﹣15不符合題意,應(yīng)舍去.(6分)
∴當(dāng)x=50時(shí),x+25=75.
答:甲工程隊(duì)單獨(dú)完成該工程需50天,則乙工程隊(duì)單獨(dú)完成該工程需75天.(7分)
(2)此問(wèn)題只要設(shè)計(jì)出符合條件的一種方案即可.
方案一:由甲工程隊(duì)單獨(dú)完成.(8分)
所需費(fèi)用為:2500×50=125000(元).(10分)
方案二:由甲乙兩隊(duì)合作完成.
所需費(fèi)用為:(2500+2000)×30=135000(元).(10分)
【解析】
(1)設(shè)甲工程隊(duì)單獨(dú)完成該工程需x天,則乙工程隊(duì)單獨(dú)完成該工程需(x+25)天.根據(jù)題意得:.(2)此問(wèn)題只要設(shè)計(jì)出符合條件的一種方案即可.方案一:由甲工程隊(duì)單獨(dú)完成.方案二:由甲乙兩隊(duì)合作完成.
解:(1)設(shè)甲工程隊(duì)單獨(dú)完成該工程需x天,則乙工程隊(duì)單獨(dú)完成該工程需(x+25)天.
根據(jù)題意得:.
方程兩邊同乘以x(x+25),得30(x+25)+30x=x(x+25),
即x2﹣35x﹣750=0.
解之,得x1=50,x2=﹣15.
經(jīng)檢驗(yàn),x1=50,x2=﹣15都是原方程的解.
但x2=﹣15不符合題意,應(yīng)舍去.
∴當(dāng)x=50時(shí),x+25=75.
答:甲工程隊(duì)單獨(dú)完成該工程需50天,則乙工程隊(duì)單獨(dú)完成該工程需75天.
(2)此問(wèn)題只要設(shè)計(jì)出符合條件的一種方案即可.
方案一:由甲工程隊(duì)單獨(dú)完成.
所需費(fèi)用為:2500×50=125000(元).
方案二:由甲乙兩隊(duì)合作完成.
所需費(fèi)用為:(2500+2000)×30=135000(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于某一函數(shù)給出如下定義:若存在實(shí)數(shù)p,當(dāng)其自變量的值為p時(shí),其函數(shù)值等于p,則稱p為這個(gè)函數(shù)的不變值.在函數(shù)存在不變值時(shí),該函數(shù)的最大不變值與最小不變值之差q稱為這個(gè)函數(shù)的不變長(zhǎng)度.特別地,當(dāng)函數(shù)只有一個(gè)不變值時(shí),其不變長(zhǎng)度q為零.例如:下圖中的函數(shù)有0,1兩個(gè)不變值,其不變長(zhǎng)度q等于1.
(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒(méi)有不變值?如果有,直接寫出其不變長(zhǎng)度;
(2)函數(shù)y=2x2-bx.
①若其不變長(zhǎng)度為零,求b的值;
②若1≤b≤3,求其不變長(zhǎng)度q的取值范圍;
(3) 記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長(zhǎng)度q滿足0≤q≤3,則m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若兩個(gè)不重合的二次函數(shù)圖象關(guān)于軸對(duì)稱,則稱這兩個(gè)二次函數(shù)為“關(guān)于軸對(duì)稱的二次函數(shù)”.
(1)請(qǐng)寫出兩個(gè)“關(guān)于軸對(duì)稱的二次函數(shù)”;
(2)已知兩個(gè)二次函數(shù)和是“關(guān)于軸對(duì)稱的二次函數(shù)”,求函數(shù)的頂點(diǎn)坐標(biāo)(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在樓房AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過(guò)樹頂E點(diǎn)恰好看到塔的底部D點(diǎn),且俯角α為45°,從樓底B點(diǎn)1米的P點(diǎn)處經(jīng)過(guò)樹頂E點(diǎn)恰好看到塔的頂部C點(diǎn),且仰角β為30°.已知樹高EF=6米,求塔CD的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC的周長(zhǎng)為21,底邊BC=5,AB的垂直平分線DE交AB于點(diǎn)D,交AC于點(diǎn)E,則△BEC的周長(zhǎng)為( )
A. 13 B. 14 C. 15 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在反比例函數(shù)y=(x>0)上,以OA為邊作正方形OABC,邊AB交y軸于點(diǎn)P,若PA:PB=1:2,則正方形OABC的面積=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(a,0),點(diǎn)B(2﹣a,0),且A在B的左邊,點(diǎn)C(1,﹣1),連接AC,BC,若在AB,BC,AC所圍成區(qū)域內(nèi)(含邊界),橫坐標(biāo)和縱坐標(biāo)都為整數(shù)的點(diǎn)的個(gè)數(shù)為4個(gè),那么a的取值范圍為(。
A. ﹣1<a≤0B. 0≤a<1C. ﹣1<a<1D. ﹣2<a<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面內(nèi)的⊙C和⊙C外一點(diǎn)Q,給出如下定義:若過(guò)點(diǎn)Q的直線與⊙C存在公共點(diǎn),記為點(diǎn)A,B,設(shè),則稱點(diǎn)A(或點(diǎn)B)是⊙C的“K相關(guān)依附點(diǎn)”,特別地,當(dāng)點(diǎn)A和點(diǎn)B重合時(shí),規(guī)定AQ=BQ,(或).
已知在平面直角坐標(biāo)系xoy中,Q(-1,0),C(1,0),⊙C的半徑為r.
(1)如圖1,當(dāng)時(shí),
①若A1(0,1)是⊙C的“k相關(guān)依附點(diǎn)”,求k的值.
②A2(1+,0)是否為⊙C的“2相關(guān)依附點(diǎn)”.
(2)若⊙C上存在“k相關(guān)依附點(diǎn)”點(diǎn)M,
①當(dāng)r=1,直線QM與⊙C相切時(shí),求k的值.
②當(dāng)時(shí),求r的取值范圍.
(3)若存在r的值使得直線與⊙C有公共點(diǎn),且公共點(diǎn)時(shí)⊙C的“相關(guān)依附點(diǎn)”,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O為BE上一點(diǎn),以OB為半徑的⊙O交AB于點(diǎn)E,交AC于點(diǎn)D.BD平分∠ABC.
(1)求證:AC為⊙O切線;
(2)點(diǎn)F為的中點(diǎn),連接BF,若BC=,BD=8,求⊙O半徑及DF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com