【題目】計(jì)算
(1)
(2)
(3)3y2-9y+5-y2+4y-5y2
(4)5(3a2b-2ab2)-3(4ab2+a2b)
【答案】(1)16;(2) -;(3) 12 a2b-22 ab2
【解析】
(1)從左到右運(yùn)用加減法則即可;(2)先運(yùn)算絕對(duì)值,再運(yùn)算乘除,最后運(yùn)算加減即可求解;(3)直接合并同類項(xiàng)即可;(4)先去括號(hào),再合并同類項(xiàng)即可.
(1)
=-3+(-9)+10+18
=-12+28
=16
(2)
=4-3+(-4)×
=1+(-)
=-
(3)3y2-9y+5-y2+4y-5y2
= -3y2-5y+5
(4)5(3a2b-2ab2)-3(4ab2+a2b)
=15a2b -10ab2 -12 ab2 -3a2b
=12 a2b-22ab2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,1),B(0,),C(3,0).
(1)若以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,則請你寫出所有符合條件的D點(diǎn)坐標(biāo).
(2)直接寫出一個(gè)符合(1)中條件的直線AD 的解析式.
(3)求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為6的正方形中,分別是上的點(diǎn),,為垂足.
(1)如圖①, AF=BF,AE=2,點(diǎn)T是射線PF上的一個(gè)動(dòng)點(diǎn),則當(dāng)△ABT為直角三角形時(shí),求AT的長;
(2)如圖②,若,連接,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,垂足為D.
(1)求作∠ABC的平分線,分別交AD,AC于P,Q兩點(diǎn);(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)證明AP=AQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+2k(k≠0)與x軸交于點(diǎn)B,與雙曲線交于點(diǎn)A、C,其中點(diǎn)A在第一象限,點(diǎn)C在第三象限.
(1)求B點(diǎn)的坐標(biāo);
(2)若S△AOB=2,求A點(diǎn)的坐標(biāo);
(3)在(2)的條件下,在y軸上是否存在點(diǎn)P,使△AOP是等腰三角形?若存在,請直接寫出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,DC=5 cm,在DC上存在一點(diǎn)E,沿直線AE把△AED折疊,使點(diǎn)D恰好落在BC邊上,設(shè)落點(diǎn)為F,若△ABF的面積為30 cm2,求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長線于點(diǎn)F,且,連接BF.
證明:;
當(dāng)滿足什么條件時(shí),四邊形AFBD是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)由 5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1 ,另兩張直角三角形紙片的面積都為 S2,中間一張正方形紙片的面積為S3,則這個(gè)平行四邊形的面積一定可以表示為( )
A. 4S2B. 4S2+S3C. 3S1+4S3D. 4S1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下圖,完成下列推理過程.
(1)∵∠1=∠A(已知), ∴AD∥BC
.(________________________________________________________)
(2)∵∠3=∠4(已知),∴CD∥AB
.(________________________________________________________)
(3)∵∠2=∠5(已知),∴AD∥BC
.(________________________________________________________)
(4)∵∠ADC+∠C=180°(已知),∴AD∥BC
.(________________________________________________________)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com