【題目】如圖,以AD為直徑的半圓O經(jīng)過(guò)RtABC斜邊AB的兩個(gè)端點(diǎn),交直角邊AC于點(diǎn)E,BE是半圓弧的三等分點(diǎn),弧BE的長(zhǎng)為π,則圖中陰影部分的面積為( 。

A.B.C.D.

【答案】D

【解析】

首先根據(jù)圓周角定理得出扇形半徑以及圓周角度數(shù),進(jìn)而利用銳角三角函數(shù)關(guān)系得出BC,AC的長(zhǎng),利用S△ABC﹣S扇形BOE=圖中陰影部分的面積求出即可

解:連接BD,BE,BO,EO,

∵B,E是半圓弧的三等分點(diǎn),

∴∠EOA=∠EOB=∠BOD=60°,

∴∠BAC=∠EBA=30°,

∴BE∥AD,

∵弧BE的長(zhǎng)為π,

π,

解得:R=2,

∴AB=ADcos30°=2 ,

∴BC=AB=,

∴AC==3,

∴S△ABC=×BC×AC=××3=,

∵△BOE和△ABE同底等高,

∴△BOE和△ABE面積相等,

∴圖中陰影部分的面積為:SABC﹣S扇形BOE

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABE中,∠B=90°,AB=BE,將ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,得到AHD,過(guò)DDCBEBE的延長(zhǎng)線于點(diǎn)C,連接BH并延長(zhǎng)交DC于點(diǎn)F,連接DEBF于點(diǎn)O.下列結(jié)論:①DE平分∠HDC;②DO=OE;③HBF的中點(diǎn);④BC-CF=2CE;⑤CD=HF,其中正確的有(

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),其中點(diǎn)B的坐標(biāo)為B4,0),拋物線的對(duì)稱軸交x軸于點(diǎn)D,CEAB,并與拋物線的對(duì)稱軸交于點(diǎn)E.現(xiàn)有下列結(jié)論:①a0;②b0;③4a+2b+c0;④AD+CE4.其中所有正確結(jié)論的序號(hào)是( 。

A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線交x軸于A,B兩點(diǎn)(AB右邊),A3,0),B1,0)交y軸于C點(diǎn),C0,3),連接AC;

1)求拋物線的解析式;

2P為拋物線上的一點(diǎn),作PECAE點(diǎn),且CE=3PE,求P點(diǎn)坐標(biāo);

3)將原拋物線向上平移1個(gè)單位拋物線的對(duì)稱軸交x軸于H點(diǎn),過(guò)H作直線MH,NH,當(dāng)MHNH時(shí),求MN恒過(guò)的定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,CO上一點(diǎn),連接AC.過(guò)點(diǎn)BO的切線,交AC的延長(zhǎng)線于點(diǎn)D,在AD上取一點(diǎn)E,使AEAB,連接BE,交O于點(diǎn)F

請(qǐng)補(bǔ)全圖形并解決下面的問(wèn)題:

1)求證:∠BAE2EBD;

2)如果AB5,sinEBD.求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹(shù)上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點(diǎn)B處,風(fēng)箏掛在建筑物上方的樹(shù)枝點(diǎn)G處(點(diǎn)G在FE的延長(zhǎng)線上).經(jīng)測(cè)量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點(diǎn)G與建筑物頂點(diǎn)D及風(fēng)箏線在手中的點(diǎn)A在同一條直線上,點(diǎn)A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.

(1)求風(fēng)箏距地面的高度GF;

(2)在建筑物后面有長(zhǎng)5米的梯子MN,梯腳M在距墻3米處固定擺放,通過(guò)計(jì)算說(shuō)明:若兵兵充分利用梯子和一根米長(zhǎng)的竹竿能否觸到掛在樹(shù)上的風(fēng)箏?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是圓O的直徑,弦CDAB,垂足為H,在CD上有點(diǎn)N滿足CN=CA,AN交圓O于點(diǎn)F,過(guò)點(diǎn)FAC的平行線交CD的延長(zhǎng)線于點(diǎn)M,交AB的延長(zhǎng)線于點(diǎn)E

1)求證:EM是圓O的切線;

2)若ACCD=58AN=3,求圓O的直徑長(zhǎng)度.

3)在(2)的條件下,直接寫(xiě)出FN的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)點(diǎn)C,交AB于點(diǎn)D.已知AB=4,BC=.

(1)若OA=4,求k的值;

(2)連接OC,若BD=BC,求OC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的直徑,的切線,連接,過(guò),連接,延長(zhǎng)交于點(diǎn)

1)求證:的切線;

2)若

①求的長(zhǎng);

②連接,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案