【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB垂足為D,AE平分∠CAB交CD于點F,交BC于點E,EH⊥AB,垂足為H,連接FH.
求證:(1)CF=CE
(2)四邊形CFHE是平行四邊形.
【答案】(1)見解析;(2)見解析.
【解析】
(1)利用垂直的定義結(jié)合角平分線的性質(zhì)以及互余的性質(zhì)得出∠4=∠5,進而得出答案;
(2)根據(jù)題意分別得出CF∥EH,CF=EH,進而得出答案.
證明 (1)如圖所示:∵∠ACB=90°,CD⊥AB垂足為D,
∴∠1+∠5=90°,∠2+∠3=90°,
又∵∠AE平分∠CAB,
∴∠1=∠2,
∴∠3=∠5,
∵∠3=∠4,
∴∠4=∠5,
∴CF=CE;
(2)∵AE平分∠CAB,CE⊥AC,EH⊥AB,
∴CE=EB,
由(1)知,CF=CE,
∴CF=EH,
∵CD⊥AB,EH⊥AB,
∴∠CDB=90°,∠EHB=90°,
∴∠CDB=∠EHB,
∴CD∥EH,
即CF∥EH,
∴四邊形CFHE是平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準(zhǔn)備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.
(1)求溫馨提示牌和垃圾箱的單價各是多少元?
(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,將△ABD沿著BD折疊,使點A與點E重合.
(1)如圖,對角線AC、BD相交于點O,連接OE,則線段OE的長= ;
(2)如圖,過點E作EF∥CD交線段BD于點F,連接AF,求證:四邊形ABEF是菱形;
(3)如圖,在(2)條件下,線段AE、BD相交于M,連接CE,求線段CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AP交x軸于點P(p,0),交y軸于點A(0,a),且a、p滿足.
(1)求直線AP的解析式;
(2)如圖1,點P關(guān)于y軸的對稱點為Q,R(0,2),點S在直線AQ上,且SR=SA,求直線RS的解析式和點S的坐標(biāo);
(3)如圖2,點B(﹣2,b)為直線AP上一點,以AB為斜邊作等腰直角三角形ABC,點C在第一象限,D為線段OP上一動點,連接DC,以DC為直角邊,點D為直角頂點作等腰三角形DCE,EF⊥x軸,F為垂足,下列結(jié)論:①2DP+EF的值不變;②的值不變;其中只有一個結(jié)論正確,請你選擇出正確的結(jié)論,并求出其定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個二次函數(shù)圖象上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:
(1)求這個二次函數(shù)的表達式;
(2)求m的值;
(3)在給定的直角坐標(biāo)系中,畫出這個函數(shù)的圖象;
(4)根據(jù)圖象,寫出當(dāng)y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點,∠AOC=60°,則當(dāng)△PAB為直角三角形時,AP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在⊙O上,聯(lián)結(jié)CO并延長交弦AB于點D, ,聯(lián)結(jié)AC、OB,若CD=40,AC=20.
(1)求弦AB的長;
(2)求sin∠ABO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,對于任意兩點,,若點滿足,,那么稱點是點,的融合點.
例如:,,當(dāng)點滿是,時,則點是點,的融合點,
(1)已知點,,,請說明其中一個點是另外兩個點的融合點.
(2)如圖,點,點是直線上任意一點,點是點,的融合點.
①試確定與的關(guān)系式.
②若直線交軸于點,當(dāng)為直角三角形時,求點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com