【題目】窗戶的形狀如圖所示(圖中長度單位:cm),其中上部是半圓形,下部是邊長相同的四個小正方形. 已知下部小正方形的邊長是acm.

1)計算窗戶的面積(計算結(jié)果保留π.

2)計算窗戶的外框的總長(計算結(jié)果保留π.

3)安裝一種普通合金材料的窗戶單價是175/平方米,當(dāng)a=50cm時,請你幫助計算這個窗戶安裝這種材料的費用(π3.14,窗戶面積精確到0.1.

【答案】1;(2;(3245.

【解析】

1)根據(jù)圖示,窗戶的面積等于4個小正方形的面積加上半徑是a的半圓的面積;

2)根據(jù)圖示,窗戶外框的總長就是用3條長度是2acm的邊的長度加上半徑是acm的半圓的長度;

3)根據(jù)窗戶的總面積,代入求值即可.

解:(1)窗戶的面積為:

2)窗戶的外框的總長為:

3)當(dāng)a=50cm,即:a=0.5m時,

窗戶的總面積為:

π≈3.14,原式=1+0.3925≈1.4m2)

安裝窗戶的費用為:1.4×175=245(元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角ABC中,BAC=90°,D在BC上,連接AD,作BFAD分別交AD于E,AC于F.

(1)如圖1,若BD=BA,求證:ABE≌△DBE;

(2)如圖2,若BD=4DC,取AB的中點G,連接CG交AD于M,求證:GM=2MC;AG2=AFAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC5,cos∠ABC,將△ABC繞點C順時針旋轉(zhuǎn),得到△A1B1C

1)如圖,當(dāng)點B1在線段BA延長線上時.求證:BB1∥CA1;△AB1C的面積;

2)如圖,點EBC邊的中點,點F為線段AB上的動點,在△ABC繞點C順時針旋轉(zhuǎn)過程中,點F的對應(yīng)點是F1,求線段EF1長度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動點(不與A,B重合),過M點作MN∥BC交AC于點N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令A(yù)M=x.

(1)用含x的代數(shù)式表示△MNP的面積S;

(2)當(dāng)x為何值時,⊙O與直線BC相切?

(3)在動點M的運動過程中,記△MNP與梯形BCNM重合的面積為y,試求y關(guān)于x的函數(shù)表達式,并求x為何值時,y的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司需要購買甲、乙兩種商品共150,甲、乙兩種商品的價格分別為600元和1000且要求乙種商品的件數(shù)不少于甲種商品件數(shù)的2設(shè)購買甲種商品x,購買兩種商品共花費y元.

請求出yx的函數(shù)關(guān)系式及x的取值范圍.

試利用函數(shù)的性質(zhì)說明,當(dāng)購買多少件甲種商品時,所需要的費用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請利用直尺和圓規(guī)完成以下問題. (要求:保留作圖痕跡,補全作法)如圖:在直線MN上求作一點P,使點P到射線OAOB的距離相等.

作法:(1) 以點O為圓心,適當(dāng)長為半徑 ,OA于點C,OB于點D.

(2) 分別以點CD為圓心, CD的長為 畫弧,兩弧在∠AOB 相交于點Q.

(3) 畫射線OQ,射線OQ與直線MN相交于點P,P點即為所求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.

1)若1表示的點與表示的點重合,則表示的點與數(shù) 表示的點重合;

2)若表示的點與3表示的點重合,回答以下問題:

5表示的點與數(shù) 表示的點重合;

②若數(shù)軸上、兩點之間的距離為9的左側(cè)),且、兩點經(jīng)折疊后重合,求、兩點表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形紙片ABC中,∠A=65°,∠B=75°,將∠C沿DE對折,使點C落在ΔABC外的點處,若∠1=20°,則∠2的度數(shù)為( )

A. 80°B. 90°

C. 100°D. 110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB20cm,點P從點A出發(fā),沿AB2cm/s的速度勻速向終點B運動;同時點Q從點B出發(fā),沿BA4cm/s的速度勻速向終點A運動,設(shè)運動時間為ts

1)填空:PA   cm;BQ   cm;(用含t的代數(shù)式表示)

2)當(dāng)P、Q兩點相遇時,求t的值;

3)探究:當(dāng)PQ兩點相距5cm時,求t的值.

查看答案和解析>>

同步練習(xí)冊答案