【題目】如圖,在AB為直徑的圓交ACBC與點(diǎn)E和點(diǎn)DAB=6,且EAC的中點(diǎn),過(guò)E點(diǎn)作

1)求的值

2)連接OF并求OF的長(zhǎng)

【答案】1;(2OF=.

【解析】

1)連接BE,證明ABC為等邊三角形,求出BCEF的值即可得出結(jié)論;

(2)連接OF,過(guò)點(diǎn)OOMBC,分別求出OM,MF的長(zhǎng),再由勾股定理即可得出結(jié)論.

(1)連接BE,

AB為圓O的直徑,

BEAC

又∵EAC的中點(diǎn)

AB=BC

AC=BC

AB=BC=AC=6

ABC為等邊三角形

∴∠ABC=C=60°

EF=CEsin60°=

;

(2) 連接OF,過(guò)點(diǎn)OOMBC,如圖,

BM=OB=AB=,CF=CE=AC=

OM = OB*sin60°=ABsin60°=

MF=BC - BM - CF=6--=3

OF=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同樣條件下對(duì)某種小麥種子進(jìn)行發(fā)芽試驗(yàn),統(tǒng)計(jì)發(fā)芽種子數(shù),獲得如下頻數(shù)表.

試驗(yàn)種子n(粒)

1

5

50

100

200

500

1000

2000

3000

發(fā)芽頻數(shù)m

1

4

45

92

188

476

951

1900

2850

發(fā)芽頻率

0

0.80

0.90

0.92

0.94

0.952

0.951

a

b

(1)計(jì)算表中a,b的值;

(2)估計(jì)該麥種的發(fā)芽概率;

(3)如果該麥種發(fā)芽后,只有87%的麥芽可以成活,現(xiàn)有100kg麥種,則有多少千克的麥種可以成活為秧苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將如圖所示的牌面數(shù)字分別是1,2,3,4 的四張撲克牌背面朝上,洗勻后放在桌面上.

(1)從中隨機(jī)抽出一張牌,牌面數(shù)字是偶數(shù)的概率是_____

(2)先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機(jī)抽取一張,將牌面數(shù)字作為個(gè)位上的數(shù)字,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求組成的兩位數(shù)恰好是 4 的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解居民的環(huán)保意識(shí),社區(qū)工作人員在光明小區(qū)隨機(jī)抽取了若干名居民開(kāi)展主題為打贏藍(lán)天保衛(wèi)戰(zhàn)的環(huán)保知識(shí)有獎(jiǎng)問(wèn)答活動(dòng),并用得到的數(shù)據(jù)繪制了如圖條形統(tǒng)計(jì)圖(得分為整數(shù),滿分為10分,最低分為6分)

請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)本次調(diào)查一共抽取了   名居民;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)社區(qū)決定對(duì)該小區(qū)500名居民開(kāi)展這項(xiàng)有獎(jiǎng)問(wèn)答活動(dòng),得10分者設(shè)為一等獎(jiǎng),請(qǐng)你根據(jù)調(diào)查結(jié)果,幫社區(qū)工作人員估計(jì)需準(zhǔn)備多少份一等獎(jiǎng)獎(jiǎng)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為4cm,∠A60°,弧BD是以點(diǎn)A為圓心,AB長(zhǎng)為半徑的弧,弧CD是以點(diǎn)B為圓心,BC長(zhǎng)為半徑的弧,則陰影部分的面積為( 。

A. 2cm2B. 4cm2C. 4cm2D. πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=﹣x+3x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過(guò)A,B兩點(diǎn),點(diǎn)P在線段OA上,從點(diǎn)A1個(gè)單位/秒的速度勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q在線段AB上,從點(diǎn)A出發(fā),向點(diǎn)B個(gè)單位/秒的速度勻速運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)求拋物線的解析式;

(2)當(dāng)t為何值時(shí),△APQ為直角三角形;

(3)過(guò)點(diǎn)PPEy軸,交AB于點(diǎn)E,過(guò)點(diǎn)QQFy軸,交拋物線于點(diǎn)F,連接EF,當(dāng)EFPQ時(shí),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的平分線相交于點(diǎn)P,,PBCE交于點(diǎn)HBCF,交ABG,下列結(jié)論:①;②;③ BP垂直平分CE;④,其中正確的判斷有(

A. ①②B. ③④C. ①③④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示的是午休時(shí)老師們所用的一種折疊椅,現(xiàn)將躺椅以如圖2所示的方式傾斜放置,AM與地面ME45°角,ABME,椅背BC與水平線成30°角,其中AM50厘米,BC72厘米,BP是躺椅的伸縮支架,且30°≤BPM90°.(結(jié)果精確到1厘米;參考數(shù)據(jù)1.4 1.7, 2.2)

(1)求此時(shí)點(diǎn)C與地面的距離.

(2)(1)的條件下,求伸縮支架BP可達(dá)到的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案