【題目】如圖,在四邊形中,,,對角線,點在軸上,與軸平行,點在軸上.
(1)求的度數(shù).
(2)點在對角線上,點在四邊形內(nèi)且在點的右邊,連接,已知,,設(shè).
①求的長(用含的代數(shù)式表示);
②若某一反比例函數(shù)圖象同時經(jīng)過點、,求的值.
【答案】(1)60°;(2)① ;②
【解析】
(1)連接AC,首先證明,則有,進而可得,再利用勾股定理即可求出BE,DE的長度,然后利用特殊角的三角函數(shù)值即可求出的度數(shù),最后利用即可求解;
(2)連接AQ,取AD的中點F,連接QF,易證均為等邊三角形,然后證明,則有,再證明C,Q,F三點共線,然后求出CF的長度,最后利用即可求解;
(3)先利用平行線分線段成比例求出Q的坐標(biāo),然后求出點A的坐標(biāo),進而求出反比例函數(shù)的解析式,將Q的坐標(biāo)代入反比例函數(shù)解析式中即可求出m的值.
(1)連接AC交BD于點E,
在和中,
.
,
.
,
設(shè) ,
則有,
解得 .
在中,
,
,
.
(2)①連接AQ,取AD的中點F,連接QF,
∵,,
為等邊三角形,
.
∵,,
為等邊三角形,
,
,
.
,
.
,點F是 AD中點,
.
在和中,
,
.
∵為等邊三角形,點F為AD中點,
,
∴C,Q,F三點共線.
∵,,
,
;
②過點Q作交AC于點G,過點F作交AC于點H,
∵,
.
∵點F是AD中點,
,
.
∵,
,
,
即,
解得,
,
∴點Q的坐標(biāo)為.
,
∴點A的坐標(biāo)為,
設(shè)反比例函數(shù)的解析式為 ,
將點A代入反比例函數(shù)中,得,
∴反比例函數(shù)的解析式為.
將點Q的坐標(biāo)代入反比例函數(shù)的解析式中,有
,
解得 或(舍去).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織數(shù)學(xué)興趣探究活動,愛思考的小實同學(xué)在探究兩條直線的位置關(guān)系查閱資料時發(fā)現(xiàn),兩條中線互相垂直的三角形稱為“中垂三角形”.如圖1、圖2、圖3中,AF、BE是△ABC的中線,AF⊥BE于點P,像△ABC這樣的三角形均稱為“中垂三角形”.
(1)如圖1,當(dāng)∠PAB=45°,AB=6時,AC= ,BC= ;如圖2,當(dāng)sin∠PAB=,AB=4時,AC= ,BC= ;
(2)請你觀察(1)中的計算結(jié)果,猜想AB2、BC2、AC2三者之間的關(guān)系,用等式表示出來,并利用圖3證明你的結(jié)論.
(3)如圖4,在△ABC中,AB=4,BC=2,D、E、F分別是邊AB、AC、BC的中點,連結(jié)DE并延長至G,使得GE=DE,連結(jié)BG,當(dāng)BG⊥AC于點M時,求GF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)九年級男生共250人,現(xiàn)隨機抽取了部分九年級男生進行引體向上測試,相關(guān)數(shù)據(jù)的統(tǒng)計圖如下.設(shè)學(xué)生引體向上測試成績?yōu)?/span>x(單位:個).學(xué)校規(guī)定:當(dāng)0≤x<2時成績等級為不及格,當(dāng)2≤x<4時成績等級為及格,當(dāng)4≤x<6時成績等級為良好,當(dāng)x≥6時成績等級為優(yōu)秀.樣本中引體向上成績優(yōu)秀的人數(shù)占30%,成績?yōu)?/span>1個和2個的人數(shù)相同.
(1)補全統(tǒng)計圖;
(2)估計全校九年級男生引體向上測試不及格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,,,是等腰直角三角形且,把繞點B順時針旋轉(zhuǎn),得到,把繞點C順時針旋轉(zhuǎn),得到,依此類推,得到的等腰直角三角形的直角頂點的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,拋物線經(jīng)過兩點,與軸的另一個交點為,點是第一象限拋物線上的點,連結(jié)交直線于點,設(shè)點的橫坐為,與的比值為.
(1)__________;
(2)當(dāng)取最大值時,__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AD是△ABC的角平分線,過點D分別作AC、AB的平行線,交AB于點E,交AC于點F.
(1)求證:四邊形AEDF是菱形.
(2)若AF=13,AD=24.求四邊形AEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們常見的汽車玻璃升降器如圖①所示,圖②和圖③是升降器的示意圖,其原理可以看作是主臂PB繞固定的點O旋轉(zhuǎn),當(dāng)端點P在固定的扇形齒輪上運動時,通過叉臂式結(jié)構(gòu)(點B可在MN上滑動)的玻璃支架MN帶動玻璃沿導(dǎo)軌作上下運動而達(dá)到玻璃升降目的.點O和點P,A,B在同一直線上.當(dāng)點P與點E重合時,窗戶完全閉合(圖②),此時∠ABC=30°;當(dāng)點P與點F重合時,窗戶完全打開(圖③).已知的半徑OP=5cm,=cm,OA=AB=AC=20cm.
(1)當(dāng)窗戶完全閉合時,OC=_____cm.
(2)當(dāng)窗戶完全打開時,PC=_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于某點(不是原點),稱以點為圓心,長為半徑的圓為點的半長圓;對于點,若將點的半長圓繞原點旋轉(zhuǎn),能夠使得點位于點的半長圓內(nèi)部或圓上,則稱點能被點半長捕獲(或點能半長捕獲點).
(1)如圖,在平面直角坐標(biāo)系中,點,則點的半長圓的面積為__________;下列各點、、、,能被點半長捕獲的點有__________;
(2)已知點,,,①如圖,點,當(dāng)時,線段上的所有點均可以被點半長捕獲,求的取值范圍;②若對于平面上的任意點(原點除外)都不能半長捕獲線段上的所有點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在開發(fā)區(qū)建設(shè)中,要拆除煙囪AB,在地面上事先畫定以B為圓心,半徑與AB等長的圓形危險區(qū),現(xiàn)在從離B點21米遠(yuǎn)的建筑物CD頂點C,測得A點的仰角為,B點的俯角為,問離B點35米遠(yuǎn)的文物保護區(qū)是否在危險區(qū)內(nèi),請通過計算說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com