【題目】某校九年(1)班針對“你最喜愛的課外活動(dòng)項(xiàng)目”對全班學(xué)生進(jìn)行調(diào)查,調(diào)查項(xiàng)目分別為球類、棋類、電腦、藝術(shù),要求每生必選且只能選其中一類,并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖如下:
學(xué)生所選項(xiàng)目人數(shù)的統(tǒng)計(jì)表
項(xiàng)目 | 男生人數(shù) | 女生人數(shù) |
電腦 | a | 8 |
球類 | 8 | b |
棋類 | 4 | c |
藝術(shù) | 2 | 3 |
根據(jù)以上信息解決下列問題:
(1)a= ,b= ,c= .
(2)該班要從參加“藝術(shù)”課外活動(dòng)的學(xué)生中選2名參加學(xué)校藝術(shù)節(jié)活動(dòng),其中有2位女生因有事而棄權(quán),請用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率
【答案】(1)12,7,6(2)
【解析】
(1)根據(jù)藝術(shù)的人數(shù)和所占的百分比求出抽查的總?cè)藬?shù),再根據(jù)各自所占的百分比即可求出a,b,c;
(2)根據(jù)題意畫出樹狀圖得出所有等情況數(shù)和恰好有1名男生、1名女生的學(xué)生數(shù),然后根據(jù)概率公式即可得出答案.
解:(1)抽查的總學(xué)生數(shù)是:(2+3)÷10%=50(人),
a=50×40%﹣8=12,
b=50×30%﹣8=7,
c=50×20%﹣4=6,
故答案為:12,7,6;
(2)根據(jù)題意畫圖如下:
共有6種可能出現(xiàn)的結(jié)果,并且它們都是等可能的,其中“1名男生、1名女生”有4種可能,
所以P( 1名男生、1名女生)==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇同學(xué)利用業(yè)余時(shí)間進(jìn)行射擊訓(xùn)練,一共射擊7次,經(jīng)過統(tǒng)計(jì),制成如圖12所示的折線統(tǒng)計(jì)圖.
(1)這組成績的眾數(shù)是 ;
(2)求這組成績的方差;
(3)若嘉淇再射擊一次(成績?yōu)檎麛?shù)環(huán)),得到這8次射擊成績的中位數(shù)恰好就是原來7次成績的中位數(shù),求第8次的射擊成績的最大環(huán)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1中,△ABC為等腰三角形,AB=AC,點(diǎn)E為腰AB上任意一點(diǎn),以CE為底邊作等腰△DEC.且∠BAC=∠EDC=α,連結(jié)AD:
(1)如圖2中,當(dāng)α=60°時(shí),∠DAC=______,=______;
(2)如圖3中,當(dāng)α=90°時(shí),求∠DAC的度數(shù)與的值;
(3)如圖1中,當(dāng)BC=AC.∠DAC=___(用α的代數(shù)式表示)=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB=AC,AB為⊙O的直徑,AC、BC分別交⊙O于E、D,連結(jié)ED、BE.
(1)試判斷DE與BD是否相等,并說明理由;
(2)如果BC=6,AB=5,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2.若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,下圖①為點(diǎn)P,Q的“相關(guān)矩形”的示意圖.
已知點(diǎn)A的坐標(biāo)為(1,0),
(1)若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
(2)點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(3)若點(diǎn)D的坐標(biāo)為(4,2),將直線y=2x+b平移,當(dāng)它與點(diǎn)A,D的“相關(guān)矩形”沒有公共點(diǎn)時(shí),求出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°后得到正方形OA1B1C1,依此方式,繞點(diǎn)O連續(xù)旋轉(zhuǎn)2018次得到正方形OA2018B2018C2018,如果點(diǎn)A的坐標(biāo)為(1,0),那么點(diǎn)B2018的坐標(biāo)為( 。
A. (1,1) B. (0,) C. () D. (﹣1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生小亮響應(yīng)國家創(chuàng)新創(chuàng)業(yè)號召,回家鄉(xiāng)承包了一片坡地,改造后種植優(yōu)質(zhì)獼猴桃.經(jīng)核算這批獼猴桃的種植成本為16 元,設(shè)銷售時(shí)間為(天),通過一個(gè)月(30天)的試銷得出如下規(guī)律:①獼猴桃的銷售價(jià)格p(元)與時(shí)間x(天)的關(guān)系:當(dāng) 時(shí),p與x滿足一次函數(shù)關(guān)系,如下表:
(天) | 2 | 4 | 6 | ...... |
(元) | 35 | 34 | 33 | ...... |
當(dāng)時(shí),銷售價(jià)格穩(wěn)定為24元;②獼猴桃的銷售量與時(shí)間(天)之間的關(guān)系:第一天賣出,以后每天比前一天多賣出.
(1)填空:試銷的一個(gè)月中,銷售價(jià)p(元)與時(shí)間(天)的函數(shù)關(guān)系式為____;銷售量與時(shí)間x(天)的函數(shù)關(guān)系式為_____.
2)求銷售第幾天時(shí),當(dāng)天的利潤最大?最大利潤是多少?
(3)請求出試銷的一個(gè)月中當(dāng)天銷售利潤不低于 930 元的天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=8,點(diǎn)P在邊CD上,tan∠PBC=,點(diǎn)Q是在射線BP上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作AB的平行線交射線AD于點(diǎn)M,點(diǎn)R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當(dāng)點(diǎn)R與點(diǎn)D重合時(shí),求PQ的長;
(2)如圖2,試探索: 的比值是否隨點(diǎn)Q的運(yùn)動(dòng)而發(fā)生變化?若有變化,請說明你的理由;若沒有變化,請求出它的比值;
(3)如圖3,若點(diǎn)Q在線段BP上,設(shè)PQ=x,RM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com