【題目】如圖,拋物線y=ax2+bx+c與x軸相交于A.B兩點,點A在點B左側(cè),頂點在折線M﹣P﹣N上移動,它們的坐標(biāo)分別為M(﹣1,4).P(3,4).N(3,1).若在拋物線移動過程中,點A橫坐標(biāo)的最小值為﹣3.則a﹣b+c的最小值是( 。
A.﹣15B.﹣12C.﹣4D.﹣2
【答案】A
【解析】
由題意得:當(dāng)頂點在M處,點A橫坐標(biāo)為-3,可以求出拋物線的a值;當(dāng)頂點在N處時,y=a-b+c取得最小值,即可求解.
解:由題意可知:當(dāng)頂點在M處,點A橫坐標(biāo)為-3,
則拋物線的表達(dá)式為:y=a(x+1)2+4,
將點A(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,
當(dāng)x=-1時,y=a-b+c,
頂點在N處時,y=a-b+c取得最小值,
頂點在N處,拋物線的表達(dá)式為:y=-(x-3)2+1,
當(dāng)x=-1時,y=a-b+c=-(-1-3)2+1=-15,
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,M、N為AB的三等分點,DM、DN分別交AC于P、Q兩點,則AP:PQ:QC=________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃利用一片空地建一個學(xué)生自行車車棚,自行車車棚為矩形,其中一面靠墻,這堵墻的長度為,另三面墻用現(xiàn)有的木板材料圍成,總長為,且計劃建造車棚的面積為
(1)如圖1,為了方便學(xué)生出行,學(xué)校決定在與墻平行的一面留兩個寬的門,求這個車棚的長和寬;
(2)如圖2,為了方使學(xué)生停取車,施工單位又決定在車棚內(nèi)修建一條平行于墻和兩條垂直于墻的條等寬小路,使得剩余面積為,求小路的寬度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為23.5元/千克,求當(dāng)天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CF切⊙O于點C,BF⊥CF于點F,點D在⊙O上,CD交AB于點E,∠BCE=∠BCF.
(1)求證:弧AC=弧AD;
(2)點G在⊙O上,∠GCD=∠FCD,連接DO并延長交CG于點H,求證:CH=GH;
(3)在(2)的條件下,連接AG,AG=3,CF=2,求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲船以每小時30海里的速度向正北方向航行,當(dāng)甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當(dāng)甲船航行20分鐘到達(dá)A2時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里.
(1)判斷△A1A2B2的形狀,并給出證明;
(2)求乙船每小時航行多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)后,得到△ADF,此時點D落在邊BC的中點處,則圖中與∠C相等的角(除∠C外)有( )
A.5個 B.4個 C.3個 D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系h=20t﹣5t2.下列敘述正確的是( 。
A. 小球的飛行高度不能達(dá)到15m
B. 小球的飛行高度可以達(dá)到25m
C. 小球從飛出到落地要用時4s
D. 小球飛出1s時的飛行高度為10m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2.
(1)求OD的長.
(2)求EC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com