【題目】如圖,拋物線yax2+bx+cx軸相交于A.B兩點,點A在點B左側(cè),頂點在折線MPN上移動,它們的坐標(biāo)分別為M(﹣1,4.P3,4.N3,1).若在拋物線移動過程中,點A橫坐標(biāo)的最小值為﹣3.則ab+c的最小值是( 。

A.15B.12C.4D.2

【答案】A

【解析】

由題意得:當(dāng)頂點在M處,點A橫坐標(biāo)為-3,可以求出拋物線的a值;當(dāng)頂點在N處時,y=a-b+c取得最小值,即可求解.

解:由題意可知:當(dāng)頂點在M處,點A橫坐標(biāo)為-3,

則拋物線的表達(dá)式為:y=ax+12+4

將點A-3,0)代入上式得:0=a-3+12+4,解得:a=-1

當(dāng)x=-1時,y=a-b+c

頂點在N處時,y=a-b+c取得最小值,

頂點在N處,拋物線的表達(dá)式為:y=-x-32+1,

當(dāng)x=-1時,y=a-b+c=--1-32+1=-15,

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,M、NAB的三等分點,DM、DN分別交ACP、Q兩點,則APPQQC=________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃利用一片空地建一個學(xué)生自行車車棚,自行車車棚為矩形,其中一面靠墻,這堵墻的長度為,另三面墻用現(xiàn)有的木板材料圍成,總長為,且計劃建造車棚的面積為

1)如圖1,為了方便學(xué)生出行,學(xué)校決定在與墻平行的一面留兩個寬的門,求這個車棚的長和寬;

2)如圖2,為了方使學(xué)生停取車,施工單位又決定在車棚內(nèi)修建一條平行于墻和兩條垂直于墻的條等寬小路,使得剩余面積為,求小路的寬度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.

銷售量y(千克)

34.8

32

29.6

28

售價x(元/千克)

22.6

24

25.2

26

(1)某天這種水果的售價為23.5元/千克,求當(dāng)天該水果的銷售量.

(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,CF切⊙O于點C,BFCF于點F,點D在⊙O上,CDAB于點E,∠BCE=BCF
1)求證:弧AC=AD;
2)點G在⊙O上,∠GCD=FCD,連接DO并延長交CG于點H,求證:CH=GH;
3)在(2)的條件下,連接AG,AG=3,CF=2,求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲船以每小時30海里的速度向正北方向航行,當(dāng)甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當(dāng)甲船航行20分鐘到達(dá)A2時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里.

1)判斷△A1A2B2的形狀,并給出證明;

2)求乙船每小時航行多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BAC=90°,將ABC繞點A順時針旋轉(zhuǎn)后,得到ADF,此時點D落在邊BC的中點處,則圖中與C相等的角(除C外)有(

A.5個 B.4個 C.3個 D.2個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系h20t5t2.下列敘述正確的是( 。

A. 小球的飛行高度不能達(dá)到15m

B. 小球的飛行高度可以達(dá)到25m

C. 小球從飛出到落地要用時4s

D. 小球飛出1s時的飛行高度為10m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2.

(1)求OD的長.

(2)求EC的長.

查看答案和解析>>

同步練習(xí)冊答案