如圖1,等腰直角三角板的一個(gè)銳角頂點(diǎn)與正方形ABCD的頂點(diǎn)A重合,將此三角板繞點(diǎn)A旋轉(zhuǎn),使三角板中該銳角的兩條邊分別交正方形的兩邊BC,DC于點(diǎn)E,F(xiàn),連接EF.
(1)猜想BE、EF、DF三條線段之間的數(shù)量關(guān)系,并證明你的猜想;
(2)在圖1中,過點(diǎn)A作AM⊥EF于點(diǎn)M,請(qǐng)直接寫出AM和AB的數(shù)量關(guān)系;
(3)如圖2,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=∠BAD,連接EF,過點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想AM與AB之間的數(shù)量關(guān)系.并證明你的猜想.
(1)EF=BE+DF見解析 (2)AM=AB見解析 (3)AM=AB見解析
【解析】(1)EF=BE+DF,
證明:如答圖1,延長CB到Q,使BQ=DF,連接AQ,
∵四邊形ABCD是正方形,
∴AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,
在△ADF和△ABQ中
∴△ADF≌△ABQ(SAS),
∴AQ=AF,∠QAB=∠DAF,
∵∠DAB=90°,∠FAE=45°,
∴∠DAF+∠BAE=45°,
∴∠BAE+∠BAQ=45°,
即∠EAQ=∠FAE,
在△EAQ和△EAF中
∴△EAQ≌△EAF,
∴EF=EQ=BE+BQ=BE+DF.
(2)【解析】
AM=AB,
理由是:∵△EAQ≌△EAF,
∴×EQ×AB=×FE×AM,
又∵EF=EQ,
∴AM=AB.
(3)AM=AB,
證明:如答圖2,延長CB到Q,使BQ=DF,連接AQ,
∵折疊后B和D重合,
∴AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,
在△ADF和△ABQ中,
∴△ADF≌△ABQ(SAS),
∴AQ=AF,∠QAB=∠DAF,
∵∠FAE=∠BAD,
∴∠DAF+∠BAE=∠BAE+∠BAQ=∠EAQ=∠BAD,
即∠EAQ=∠FAE,
在△EAQ和△EAF中,
∴△EAQ≌△EAF(SAS),
∴EF=EQ,
∵△EAQ≌△EAF,EF=EQ,
∴×EQ×AB=×FE×AM,
∴AM=AB.
(1)延長CB到Q,使BQ=DF,連接AQ,根據(jù)四邊形ABCD是正方形求出AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,證△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠F,證△EAQ≌△EAF,推出EF=BQ即可;
(2)根據(jù)△EAQ≌△EAF,EF=BQ得出×BQ×AB=×FE×AM,求出即可;
(3)延長CB到Q,使BQ=DF,連接AQ,根據(jù)折疊和已知得出AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,證△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠FAE,證明EAQ≌△EAF,推出EF=EQ即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)實(shí)數(shù)(解析版) 題型:計(jì)算題
計(jì)算:-12003+()-2-|3-|+3tan60°。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)圖形的相似(解析版) 題型:填空題
如圖,正方形ABCD的邊長為4,E、F分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),且AE⊥EF.則AF的最小值是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)圖形與坐標(biāo)(解析版) 題型:填空題
如圖,把“QQ”笑臉放在直角坐標(biāo)系中,已知左眼A的坐標(biāo)是(-2,3),嘴唇C點(diǎn)的坐標(biāo)為(-1,1),則將此“QQ”笑臉向右平移3個(gè)單位后,右眼B的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)因式分解(解析版) 題型:填空題
利用分解因式計(jì)算:
(1)22005﹣22004 = (2)(﹣2)51+(﹣2)50= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)反比例函數(shù)(解析版) 題型:選擇題
已知點(diǎn)A(1,y1)、B(2,y2)、C(-3,y3)都在反比例函數(shù)y= 的圖象上,則y1、y2、y3的大小關(guān)系是( )
A.y3<y1<y2
B.y1<y2<y3
C.y2<y1<y3
D.y3<y2<y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)分類討論思想(解析版) 題型:選擇題
CD是⊙O的一條弦,作直徑AB,使AB⊥CD,垂足為E,若AB=10,CD=8,則BE的長是( 。
A.8
B.2
C.2或8
D.3或7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)二次根式(解析版) 題型:填空題
已知:;;;…如果n是大于1的正整數(shù),那么請(qǐng)用含n的式子表示你發(fā)現(xiàn)的規(guī)律 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)三角形(一)(解析版) 題型:填空題
將一副直角三角板如圖擺放,點(diǎn)C在EF上,AC經(jīng)過點(diǎn)D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,則∠CDF= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com