【題目】如圖,△ABC中,∠ABC=90°,以AB為直徑的⊙O交AB于點D,點E為BC的中點,連接OD、DE.
⑴ 求證:OD⊥DE.
⑵ 若∠BAC=30°,AB=8,求陰影部分的面積.
【答案】
【解析】試題分析:(1)連接BD,易得BDC是直角三角形,E是中點,所以DE=BE,∠CBD=∠EDB,通過倒角知.
(2)用扇形面積減去三角形OAD面積就是陰影部分的面積,其中∠AOD是120°.
試題解析:
⑴ 連接DB.
∵ AB是⊙O的直徑 ,
∴ ∠ADB=90°,
∴ ∠CDB=90°,
∵ 點E是BC的中點, ∴ DE=CE=,
∴ ∠EDC=∠C,
∵ OA=OD,∴ ∠A=∠ADO,
∵ ∠ABC=90°, ∠A+∠C=90° ,
∴ ∠ADO+∠EDC=90°,
∴ ∠ODE=90°,
∴ OD⊥DE.
⑵∵∠BAC=30°,∠AOD=120°,
cm2,
∵AB=8,AO=4, 勾股定理知AD=4,O到AD的距離是2,
,
∴ .
科目:初中數(shù)學 來源: 題型:
【題目】在同一個直角坐標系中作出y=x2,y=x2-1的圖象.
(1)分別指出它們的開口方向、對稱軸以及頂點坐標;
(2)拋物線y=x2-1與拋物線y=x2有什么關系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC.
(1)求∠ECD的度數(shù);
(2)若CE=5,求BC長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°.
(1)如圖1,當點A、C、D在同一條直線上時,AC=12,EC=5,
①求證:AF⊥BD; ②求AF的長度;
(2)如圖2,當點A、C、D不在同一條直線上時,求證:AF⊥BD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,由相同邊長的小正方形組成的網(wǎng)格圖形,A、B、C都在格點上,利用網(wǎng)格畫圖:(注:所畫線條用黑色簽字筆描黑)
(1)過點C畫AB的平行線CF,標出F點;
(2)過點B畫AC的垂線BG,垂足為點G,標出G點;
(3)點B到AC的距離是線段 的長度;
(4)線段BG、AB的大小關系為:BG AB(填“>”、“<”或“=”),理由是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】仔細閱讀材料,再嘗試解決問題:
完全平方式 以及的值為非負數(shù)的特點在數(shù)學學習中有廣泛的應用,比如探求的最大(。┲禃r,我們可以這樣處理:
例如:①用配方法解題如下:
原式=+6x+9+1=
因為無論取什么數(shù),都有的值為非負數(shù),所以的最小值為0;此時 時,進而的最小值是0+1=1;所以當時,原多項式的最小值是1.
請根據(jù)上面的解題思路,探求:
(1)若(x+1)2+(y-2)2=0,則x= ,y= ..
(2)若x2+y2+6x-4y+13=0,求x,y的值;
(3)求的最小值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A和B兩個小機器人,自甲處同時出發(fā)相背而行,繞直徑為整數(shù)米的圓周上運動,15分鐘內(nèi)相遇7次,如果A的速度每分鐘增加6米,則A和B在15分鐘內(nèi)相遇9次,問圓周直徑至多是多少米?至少是多少米?(取π=3.14)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直角三角板ABC的直角頂點C在直線DE上,CF平分∠BCD.
(1)在圖1中,若∠BCE=40°,求∠ACF的度數(shù);
(2)在圖1中,若∠BCE=α,直接寫出∠ACF的度數(shù)(用含α的式子表示);
(3)將圖1中的三角板ABC繞頂點C旋轉(zhuǎn)至圖2的位置,探究:寫出∠ACF與∠BCE的度數(shù)之間的關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在四邊形ABCD中,∠D=37°,點E是BC邊上一點,沿AE折疊,點B落在AD上B′處,若B′E∥CD,則∠B=_________°.
(2)如圖2,在四邊形ABCD中,AB∥CD,點E是BC邊上一點,沿AE折疊,點B落在AD上B′處,點F是BC邊上一點,沿DF折疊,點C落在AD上C′處.B′E與C′F有何位置關系?為什么?
(3)如圖3,在四邊形ABCD中,∠B=∠D=90°,點E是BC邊上一點,沿AE折疊,點B落在AD上B′處,點F是AD邊上一點,沿CF折疊,點D落在BC上D′處.試問:AE與CF有何位置關系?說明理由.
(4)在四邊形ABCD中,點E是BC邊上一點,沿AE折疊.
①若點B落在四邊形ABCD內(nèi)B′處(如圖4),則∠1,∠2,∠BAD,∠B之間的數(shù)量關系為________.
②若點B落在四邊形ABCD外B′處(如圖5),則∠1,∠2,∠BAD,∠B之間的數(shù)量關系為 ______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com