【題目】如圖,在△ABC中,∠ABC=90°,AB=6,BC=4,P是△ABC的重心,連結(jié)BP,CP,則△BPC的面積為_____.
【答案】4
【解析】
△ABC的面積S=AB×BC==12,延長BP交AC于點(diǎn)E,則E是AC的中點(diǎn),且BP=BE,即可求解.
解:△ABC的面積S=AB×BC==12,
延長BP交AC于點(diǎn)E,則E是AC的中點(diǎn),且BP=BE,(證明見備注)
△BEC的面積=S=6,
BP=BE,
則△BPC的面積=△BEC的面積=4,
故答案為:4.
備注:重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1,
例:已知:△ABC,E、F是AB,AC的中點(diǎn).EC、FB交于G.
求證:EG=CG 證明:過E作EH∥BF交AC于H.
∵AE=BE,EH∥BF,
∴AH=HF=AF,
又∵AF=CF,
∴HF=CF,
∴HF:CF=,
∵EH∥BF,
∴EG:CG=HF:CF=,
∴EG=CG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“衍生直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.
(1)填空:該拋物線的“衍生直線”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;
(2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACM以AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若△AMN為該拋物線的“衍生三角形”,求點(diǎn)N的坐標(biāo);
(3)當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的“衍生直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形內(nèi)作正三角形,連接并延長交于F,則為_______________,若,則長度為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過原點(diǎn)及點(diǎn)(, ),且圖象與x軸的另一交點(diǎn)到原點(diǎn)的距離為1,求該二次函數(shù)解析式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一汽車租賃公司擁有某種型號(hào)的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:
x | 3000 | 3200 | 3500 | 4000 |
y | 100 | 96 | 90 | 80 |
(1)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.
(2)已知租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.用含x(x≥3000)的代數(shù)式填表:
租出的車輛數(shù) | 未租出的車輛數(shù) | ||
租出每輛車的月收益 | 所有未租出的車輛每月的維護(hù)費(fèi) |
(3)若你是該公司的經(jīng)理,你會(huì)將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)G是△ABC的重心,CG=2,sin∠ACG=,則BC長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在梯形中,,,,點(diǎn)在對(duì)角線上(不與點(diǎn)重合),,的延長線與射線交于點(diǎn),設(shè)的長為.
(1)如圖,當(dāng)時(shí),求的長;
(2)設(shè)的長為,求關(guān)于的函數(shù)解析式,并直接寫出定義域;
(3)當(dāng)是等腰三角形時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是小區(qū)常見的漫步機(jī),當(dāng)人踩在踏板上,握住扶手,像走路一樣抬腿,就會(huì)帶動(dòng)踏板連桿繞軸旋轉(zhuǎn).如圖2,從側(cè)面看,踏板靜止DE上的線段AB重合,測得BE長為0.21m,當(dāng)踏板連桿繞著A旋轉(zhuǎn)到AC處時(shí),測得∠CAB=42°,點(diǎn)C到地面的距離CF長為0.52m,當(dāng)踏板連桿繞著點(diǎn)A旋轉(zhuǎn)到AG處∠GAB=30°時(shí),求點(diǎn)G距離地面的高度GH的長.(精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:閱讀下列材料:在《北京城市總體規(guī)劃(2004 年—2020 年)》中,房山區(qū)被確定為城市發(fā)展新區(qū)和生態(tài)涵養(yǎng)區(qū),承擔(dān)著首都經(jīng)濟(jì)發(fā)展、生態(tài)涵養(yǎng)、人口疏解和休閑度假等功能.
近年來房山區(qū)地區(qū)生產(chǎn)總值和財(cái)政收入均穩(wěn)定增長.2011 年房山區(qū)地方生產(chǎn)總值是 416.0 億元;2012 年是科學(xué)助力之年,地方生產(chǎn)總值 449.3 億元,比上一年增長8.0%;2013 年房山努力在區(qū)域經(jīng)濟(jì)發(fā)展上取得新突破,地方生產(chǎn)總值是 481.8 億元,比上年增長 7.2% ;2014 年房山區(qū)域經(jīng)濟(jì)穩(wěn)中提質(zhì),完成地方生產(chǎn)總值是 519.3 億元,比上年增長 7.8%;2015 年房山區(qū)統(tǒng)籌推進(jìn)穩(wěn)增長,地區(qū)生產(chǎn)總值是 554.7 億元,比上年增長了 6.8%;2016 年經(jīng)濟(jì)平穩(wěn)運(yùn)行,地區(qū)生產(chǎn)總值是 593 億元,比上年增長了 6.9%.根據(jù)以上材料解答下列問題:
(1)選擇折線圖或條形圖將 2011 年到 2016 年的地方生產(chǎn)總值表示出來,并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(2)根據(jù)繪制的統(tǒng)計(jì)圖中的信息,預(yù)估 2017 年房山區(qū)地方生產(chǎn)總值是___億元,你的預(yù)估理由是____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com