相關習題
 0  351038  351046  351052  351056  351062  351064  351068  351074  351076  351082  351088  351092  351094  351098  351104  351106  351112  351116  351118  351122  351124  351128  351130  351132  351133  351134  351136  351137  351138  351140  351142  351146  351148  351152  351154  351158  351164  351166  351172  351176  351178  351182  351188  351194  351196  351202  351206  351208  351214  351218  351224  351232  366461 

科目: 來源: 題型:

【題目】將正整數12019按一定規(guī)律排列如下表:

平移表中帶陰影的方框,則方框中五個數的和可以是(

A. 2010 B. 2018 C. 2019 D. 2020

查看答案和解析>>

科目: 來源: 題型:

【題目】n1,2,3,…時,由大小相同的小正方形組成的圖形如圖所示,則第10個圖形中小正方形的個數總和等于(

A. 100 B. 96 C. 144 D. 140

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點為A(3,0),與y軸的交點為B(0,3),其頂點為C,對稱軸為x=1.

(1)求拋物線的解析式;
(2)已知點M為y軸上的一個動點,當△ABM為等腰三角形時,求點M的坐標;
(3)將△AOB沿x軸向右平移m個單位長度(0<m<3)得到另一個三角形,將所得的三角形與△ABC重疊部分的面積記為S,用m的代數式表示S.

查看答案和解析>>

科目: 來源: 題型:

【題目】數軸是一個非常重要的數學工具,通過它把數和數軸上的點建立起對應關系,揭示了數與點之間的內在聯(lián)系,它是“數形結合”的基礎.已知數軸上有點A和點B,點A和點B分別表示數-20和40,請解決以下問題:

(1)請畫出數軸,并標明A、B兩點;

(2)若點P、Q分別從點A、點B同時出發(fā),相向而行,點P、Q移動的速度分別為每秒4個單位長度和2個單位長度.問:當P、Q相遇于點C時,C所對應的數是多少?

(3)若點P、Q分別從點A、點B同時出發(fā),沿x軸正方向同向而行,點P、Q移動的速度分別為每秒4個單位長度和2個單位長度.問:當P、Q相遇于點D時,D所對應的數是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知直線l1∥l2 , 線段AB在直線l1上,BC垂直于l1交l2于點C,且AB=BC,P是線段BC上異于兩端點的一點,過點P的直線分別交l2、l1于點D、E(點A、E位于點B的兩側),滿足BP=BE,連接AP、CE.

(1)求證:△ABP≌△CBE;
(2)連結AD、BD,BD與AP相交于點F.如圖2.
①當 =2時,求證:AP⊥BD;
②當 =n(n>1)時,設△PAD的面積為S1 , △PCE的面積為S2 , 求 的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某商家計劃從廠家采購空調和冰箱兩種產品共20臺,空調的采購單價y1(元/臺)與采購數量x1(臺)滿足y1=﹣20x1+1500(0<x1≤20,x1為整數);冰箱的采購單價y2(元/臺)與采購數量x2(臺)滿足y2=﹣10x2+1300(0<x2≤20,x2為整數).
(1)經商家與廠家協(xié)商,采購空調的數量不少于冰箱數量的 ,且空調采購單價不低于1200元,問該商家共有幾種進貨方案?
(2)該商家分別以1760元/臺和1700元/臺的銷售單價售出空調和冰箱,且全部售完.在(1)的條件下,問采購空調多少臺時總利潤最大?并求最大利潤.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,AB是⊙O的直徑,過點A作⊙O的切線并在其上取一點C,連接OC交⊙O于點D,BD的延長線交AC于E,連接AD.
(1)求證:△CDE∽△CAD;
(2)若AB=2,AC=2 ,求AE的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】(1)問題背景:已知,如圖1,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,AB=a,△ABC的面積為S,則有BC=a,S=a2

(2)遷移應用:如圖2,△ABC△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.

求證:△ADB≌△AEC;

∠ADB的度數.

AD=2,BD=4,求△ABC的面積.

(3)拓展延伸:如圖3,在等腰△ABC中,∠BAC=120°,在∠BAC內作射線AM,點D與點B關于射線AM軸對稱,連接CD并延長交AM于點E,AF⊥CDF,連接AD,BE.

∠EAF的度數;

CD=5,BD=2,求BC的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】某市為節(jié)約水資源,制定了新的居民用水收費標準,按照新標準,用戶每月繳納的水費y元與每月用水量xm3之間的關系如圖所示.

(1)求關于x的函數解析式;

(2)若某用戶二、三月份共用水22m3(二月份用水量比三月份用水量多),繳納水費共35元,則該用戶二月份的用水量是多少m3?

查看答案和解析>>

科目: 來源: 題型:

【題目】如果一個正整數能表示成兩個連續(xù)偶數的平方差,那么這個正整數為“神秘數”.

如:

因此,4,12,20這三個數都是神秘數.

(1)282012這兩個數是不是神秘數?為什么?

(2)設兩個連續(xù)偶數為(其中為非負整數),由這兩個連續(xù)偶數構造的神秘數是4的倍數,請說明理由.

(3)兩個連續(xù)奇數的平方差(取正數)是不是神秘數?請說明理由.

查看答案和解析>>

同步練習冊答案