科目: 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD是∠B的平分線,交AC于點(diǎn)D,E是AB中點(diǎn),ED交BC的延長(zhǎng)線于點(diǎn)F.求證:AB=CF.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】小華通過(guò)學(xué)習(xí)函數(shù)發(fā)現(xiàn):若二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(x1 , y1),(x2 , y2)(x1<x2),若y1y2<0,則方程ax2+bx+c=0(a≠0)的一個(gè)根x0的取值范圍是x1<x0<x2 , 請(qǐng)你類(lèi)比此方法,推斷方程x3+x﹣1=0的實(shí)數(shù)根x0所在范圍為( )
A.﹣ <x0<0
B.0<x0<
C. <x0<1
D.1<x0<
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點(diǎn)E,且BE∥AD,試求出∠C的度數(shù).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,點(diǎn) D 是等腰直角 △ABC 腰 BC 上的中點(diǎn),點(diǎn)B 、B′ 關(guān)于 AD 對(duì)稱(chēng),且 BB′ 交AD 于 F,交 AC 于 E,連接 FC 、 AB′,下列說(shuō)法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正確的個(gè)數(shù)是()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落下點(diǎn)C1處;作∠BPC1的平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,P為平行四邊形ABCD的邊AD上的一點(diǎn),E,F(xiàn)分別為PB,PC的中點(diǎn),△PEF,△PDC,△PAB的面積分別為S,S1 , S2 . 若S=3,則S1+S2的值為( )
A.24
B.12
C.6
D.3
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】從邊長(zhǎng)為 a 的正方形內(nèi)去掉一個(gè)邊長(zhǎng)為 b 的小正方形(如圖1),然后將剩余部分剪拼成一個(gè)矩形(如圖2),上述操作所能驗(yàn)證的等式是( 。
A. (a-b)2=a2-2ab+b2 B. a2+ab=a (a+b) C. (a+b)2=a2+2ab+b2 D. a2-b2=(a+b)(a-b)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,⊙O的半徑是2,AB是⊙O的弦,點(diǎn)P是弦AB上的動(dòng)點(diǎn),且1≤OP≤2,則弦AB所對(duì)的圓周角的度數(shù)是( )
A.60°
B.120°
C.60°或120°
D.30°或150°
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖是小明家和學(xué)校所在地的簡(jiǎn)單地圖,已知OA=2cm,OB=2.5cm,OP=4cm,點(diǎn)C為OP的中點(diǎn),回答下列問(wèn)題:
(1)圖中距小明家距離相同的是哪些地方?
(2)學(xué)校、商場(chǎng)和停車(chē)場(chǎng)分別在小明家的什么方位?
(3)如果學(xué)校距離小明家400m,那么商場(chǎng)和停車(chē)場(chǎng)分別距離小明家多遠(yuǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com