相關習題
 0  351197  351205  351211  351215  351221  351223  351227  351233  351235  351241  351247  351251  351253  351257  351263  351265  351271  351275  351277  351281  351283  351287  351289  351291  351292  351293  351295  351296  351297  351299  351301  351305  351307  351311  351313  351317  351323  351325  351331  351335  351337  351341  351347  351353  351355  351361  351365  351367  351373  351377  351383  351391  366461 

科目: 來源: 題型:

【題目】如圖,∠1=65°,∠2=65°,∠3=115°.試說明:DE∥BC,DF∥AB.根據(jù)圖形,完成下面的推理:

因為∠1=65°,∠2=65°,

所以∠1=∠2.

所以______________    (         ).

因為AB與DE相交,

所以∠1=∠4(     ).

所以∠4=65°.

又因為∠3=115°,

所以∠3+∠4=180°.

所以        (          ).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直線AB,CDDE所截,則∠1 是同位角,∠1 是內錯角,∠1 是同旁內角;

(2)(1)中,如果∠5=1,那么∠1=3的推理過程如下,請在括號內注明理由:

因為∠5=1( ),

5=3( )

所以∠1=3( ).

查看答案和解析>>

科目: 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是x=﹣1,下列結論:(1)ac<0;(2)4ac<b2;(3)2a+b=0;(4)a﹣b+c>2,其中正確的結論共有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在ABCD中,AB為⊙O的直徑,⊙O與DC相切于點E,與AD相交于點F,已知AB=12,∠C=60°,則 的長為(
A.
B.
C.π
D.2π

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過程,請?zhí)羁?/span>.

解:∵OA⊥OB(已知)

所以_____=90°________

因為_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,

所以______=_____(等量代換)

所以______=90°

所以OC⊥OD.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于點A(2,0)和點B,與y軸交于點C,頂點為點D,對稱軸為直線x=﹣1,點E為線段AC的中點,點F為x軸上一動點.

(1)直接寫出點B的坐標,并求出拋物線的函數(shù)關系式;
(2)當點F的橫坐標為﹣3時,線段EF上存在點H,使△CDH的周長最小,請求出點H,使△CDH的周長最小,請求出點H的坐標;
(3)在y軸左側的拋物線上是否存在點P,使以P,F(xiàn),C,D為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】甲乙兩家綠化養(yǎng)護公司各自推出了校園綠化養(yǎng)護服務的收費方案.

甲公司方案:每月的養(yǎng)護費用y(元)與綠化面積x(平方米)是一次函數(shù)關系,如圖所示.

乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎上,超過部分每平方米收取4.

(1)求如圖所示的yx的函數(shù)解析式;(不要求寫取值范圍)

(2)如果某學校目前的綠化面積是1200平方米.試通過計算說明:選擇哪家公司的服務,每月的綠化養(yǎng)護費用較少.

查看答案和解析>>

科目: 來源: 題型:

【題目】長陽公園有四棵古樹A,B,C,D (單位:米).

(1)請寫出A,B,C,D四點的坐標;

(2)為了更好地保護古樹,公園決定將如圖所示的四邊形EFGH用圍欄圈起來,劃為保護區(qū),請你計算保護區(qū)的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知:如圖,一次函數(shù)的圖象分別與x軸、y軸相交于點A、B,且與經(jīng)過點C(2,0)的一次函數(shù)y=kx+b的圖象相交于點D,點D的橫坐標為4,直線CD與y軸相交于點E.

(1)直線CD的函數(shù)表達式為   ;(直接寫出結果)

(2)點Q為線段DE上的一個動點,連接BQ.

若直線BQ將BDE的面積分為1:2兩部分,試求點Q的坐標;

BQD沿著直線BQ翻折,使得點D恰好落在直線AB下方的坐標軸上,請直接寫出點Q的坐標: .

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,AB、AC邊的垂直平分線分別交BC邊于點M、N.

(1)如圖①,若△AMN是等邊三角形,則∠BAC=   °;

(2)如圖②,若∠BAC=135°,求證:BM2+CN2=MN2

(3)如圖③,ABC的平分線BPAC邊的垂直平分線相交于點P,過點PPH垂直BA的延長線于點H.若AB=4,CB=10,求AH的長.

查看答案和解析>>

同步練習冊答案