科目: 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點,與y軸交于點C.
(1)求拋物線的函數(shù)表達式;
(2)若點D是y軸上的一點,且以B,C,D為頂點的三角形與△ABC相似,求點D的坐標(biāo);
(3)如圖2,CE∥x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC,CE分別交于點F,G,試探究當(dāng)點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標(biāo)及最大面積;
(4)若點K為拋物線的頂點,點M(4,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQKM的周長最小,求出點P,Q的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】計算:
(1)2﹣2+()0+(﹣0.2)2014×52014
(2)(2a3b)3(﹣8ab2)÷(﹣4a4b3)
(3)(2a+1)2﹣(2a+1)(﹣1+2a)
(4)20192﹣2018×2020(運用整式乘法公式進行計算)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形的頂點A,C分別在y軸和x軸上,邊BC的中點F在y軸上,若反比例函數(shù)y=的圖象恰好經(jīng)過CD的中點E,則OA的長為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等邊△ABC邊長為10,P在AB上,Q在BC延長線,CQ=PA,過點P作PE⊥AC點E,過點P作PF∥BQ,交AC邊于點F,連接PQ交AC于點D,則DE的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點A(﹣1,1)、B(4,6)在拋物線y=ax2+bx上
(1)求拋物線的解析式;
(2)如圖1,點F的坐標(biāo)為(0,m)(m>2),直線AF交拋物線于另一點G,過點G作x軸的垂線,垂足為H.設(shè)拋物線與x軸的正半軸交于點E,連接FH、AE,求證:FH∥AE;
(3)如圖2,直線AB分別交x軸、y軸于C、D兩點.點P從點C出發(fā),沿射線CD方向勻速運動,速度為每秒
個單位長度;同時點Q從原點O出發(fā),沿x軸正方向勻速運動,速度為每秒1個單位長度.點M是直線PQ與拋物線的一個交點,當(dāng)運動到t秒時,QM=2PM,直接寫出t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.
(1)求該拋物線的解析式;
(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標(biāo);若不存在,請說明理由;
(3)當(dāng)0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).
查看答案和解析>>
科目: 來源: 題型:
【題目】推理填空:
如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),且∠1=∠4( )
∴∠2=∠4 (等量代換)
∴CE∥BF ( )
∴∠ =∠3( )
又∵∠B=∠C(已知),∴∠3=∠B(等量代換)
∴AB∥CD ( )
查看答案和解析>>
科目: 來源: 題型:
【題目】從甲地到乙地有三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:
公交車用時的頻數(shù) 公交車用時線路 | 合計 | ||||
59 | 151 | 166 | 124 | 500 | |
50 | 50 | 122 | 278 | 500 | |
45 | 265 | 160 | 30 | 500 |
早高峰期間,乘坐_________(填“”,“”或“”)線路上的公交車,從甲地到乙地“用時不超過45分鐘”的可能性最大.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與軸交于兩點和與軸交于點動點沿的邊以每秒個單位長度的速度由起點向終點運動,過點作軸的垂線,交的另一邊于點將沿折疊,使點落在點處,設(shè)點的運動時間為秒.
(1)求拋物線的解析式;
(2)N為拋物線上的點(點不與點重合)且滿足直接寫出點的坐標(biāo);
(3)是否存在某一時刻,使的面積最大,若存在,求出的值和最大面積;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀材料I:
教材中我們學(xué)習(xí)了:若關(guān)于的一元二次方程的兩根為,根據(jù)這一性質(zhì),我們可以求出己知方程關(guān)于的代數(shù)式的值.
問題解決:
(1)已知為方程的兩根,則: __ _,__ _,那么_ (請你完成以上的填空)
閱讀材料:II
已知,且.求的值.
解:由可知
又且,即
是方程的兩根.
問題解決:
(2)若且則 ;
(3)已知且.求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com