科目: 來源: 題型:
【題目】將一副三角板中的兩塊直角三角形的直角頂點(diǎn)0按圖1方式疊放在一起(其中∠C=30°,∠CDO=60°;∠OAB=∠OBA=45°).△COD繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)一周,旋轉(zhuǎn)的速度為每秒10°,若旋轉(zhuǎn)時(shí)間為t秒,請(qǐng)回答下列問題:(請(qǐng)直接寫出答案)
(1)當(dāng)0<t<9時(shí)(如圖2),∠BOC與∠AOD有何數(shù)量關(guān)系
(2)當(dāng)t為何值時(shí),邊OA∥CD?
查看答案和解析>>
科目: 來源: 題型:
【題目】作出函數(shù)y=﹣x+3的圖象,并利用圖象回答問題:
(1)當(dāng)y<0時(shí),x的取值范圍為_____;
(2)當(dāng)﹣2<x<2時(shí),y的取值范圍為_____;
(3)圖象與直線y=x﹣1的交點(diǎn)坐標(biāo)為______;這兩條直線與y軸圍成的三角形面積為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a<0,c>0)與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,且以AB為直徑的圓經(jīng)過點(diǎn)C.
(1)若點(diǎn)A(﹣2,0),點(diǎn)B(8,0),求ac的值;
(2)若點(diǎn)A(x1,0),B(x2,0),試探索ac是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說明理由.
(3)若點(diǎn)D是圓與拋物線的交點(diǎn)(D與 A、B、C 不重合),在(1)的條件下,坐標(biāo)軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△CBD相似?若存在,請(qǐng)直接寫出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知AB∥CD,EF交AB于E,交CD于F,∠AEF=68°,FG平分∠EFD,KF⊥FG,求∠KFC的度數(shù).
解:∵AB∥CD(已知)
∴∠EFD=∠AEF( )
∵∠AEF=68°(已知)
∴∠EFD=∠AEF=68°( )
∵FG平分∠EFD(已知)
所以∠EFG=∠GFD=∠EFD=34°( )
又因?yàn)?/span>KF⊥FG( )
所以∠KFG=90°( )
所以∠KFC=180°-∠GFD-∠KFG= .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知CE是圓O的直徑,點(diǎn)B在圓O上由點(diǎn)E順時(shí)針向點(diǎn)C運(yùn)動(dòng)(點(diǎn)B不與點(diǎn)E、C重合),弦BD交CE于點(diǎn)F,且BD=BC,過點(diǎn)B作弦CD的平行線與CE的延長線交于點(diǎn)A.
(1)若圓O的半徑為2,且點(diǎn)D為弧EC的中點(diǎn)時(shí),求圓心O到弦CD的距離;
(2)當(dāng)DFDB=CD2時(shí),求∠CBD的大小;
(3)若AB=2AE,且CD=12,求△BCD的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),且DG⊥CE,垂足為點(diǎn)G.
(1)求證:DC=BE;
(2)若∠AEC=54°,求∠BCE的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖在下面平面直角坐標(biāo)系中,已知A ,B ,C 三點(diǎn).其中滿足.
(1)求的值;
(2)如果在第二象限內(nèi)有一點(diǎn) ,請(qǐng)用含的式子表示四邊形的面積;
(3)在(2)的條件下,是否存在點(diǎn),使四邊形的面積為△的面積的兩倍?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com