科目: 來源: 題型:
【題目】為了解學(xué)生手機使用情況,某學(xué)校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學(xué)生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②的統(tǒng)計圖,已知“查資料”的人數(shù)是40人.
使用手機的目的 每周使用手機的時間
(0~1表示大于0同時小于等于1,以此類推)
請你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的百分比為_______,圓心角度數(shù)是度_______;
(2)補全條形統(tǒng)計圖:
(3)該校共有學(xué)生2100人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】五一期間,小明隨父母到某旅游勝地參觀游覽,他在游客中心O處測得景點A在其北偏東72°方向,測得景點B在其南偏東40°方向.小明從游客中心走了2千米到達景點A,已知景點B正好位于景點A的正南方向,求景點A與B之間的距離.(結(jié)果精確到0.1千米)
(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,sin40°≈0.64,tan40°≈0.84)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AD=2,AB=3,過點A,C作相距為2的平行線段AE,CF,分別交CD,AB于點E,F(xiàn),則DE的長是( 。
A. B. C. 1 D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(-4,2)、B(0,4)、C(0,2),
(1)畫出△ABC關(guān)于點C成中心對稱的△A1B1C;平移△ABC,若點A的對應(yīng)點A2的坐標(biāo)為(0,-4),畫出平移后對應(yīng)的△A2B2C2;
(2)△A1B1C和△A2B2C2關(guān)于某一點成中心對稱,則對稱中心的坐標(biāo)為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△AOB中,兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將△AOB繞點B逆時針旋轉(zhuǎn)90°后得到△A′O′B.若反比例函數(shù)的圖象恰好經(jīng)過斜邊A′B的中點C,S△ABO=4,tan∠BAO=2,則k的值為( )
A.3 B.4 C.6 D.8
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知點E、F分別是四邊形ABCD的邊AD、BC的中點,G、H分別是對角線BD、AC的中點,要使四邊形EGFH是菱形,則四邊形ABCD需滿足的條件是( )
A.AB=CDB.AC=BDC.AC⊥BDD.AD=BC
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2mx+4m﹣8,
(1)當(dāng)x≤2時,函數(shù)值y隨x的增大而減小,求m的取值范圍.
(2)以拋物線y=x2﹣2mx+4m﹣8的頂點A為一個頂點作該拋物線的內(nèi)接正三角形AMN(M,N兩點在拋物線上),請問:△AMN的面積是與m無關(guān)的定值嗎?若是,請求出這個定值;若不是,請說明理由.
(3)若拋物線y=x2﹣2mx+4m﹣8與x軸交點的橫坐標(biāo)均為整數(shù),求整數(shù)m的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F.
(1)求證:四邊形DEBF是平行四邊形;
(2)當(dāng)四邊形DEBF是菱形時,求菱形的周長.
(3)在(2)的基礎(chǔ)上,直接寫出BD與EF的位置關(guān)系.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題9分)把代數(shù)式通過配湊等手段,得到完全平方式,再運用完全平方式是非負性這一性質(zhì)增加問題的條件,這種解題方法叫做配方法.配方法在代數(shù)式求值,解方程,最值問題等都有著廣泛的應(yīng)用.
例如:①用配方法因式分解:a2+6a+8
原式=a2+6a+9-1
=(a+3)2 –1
=(a+3-1)(a+3+1)
=(a+2)(a+4)
②若M=a2-2ab+2b2-2b+2,利用配方法求M的最小值:
a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1
=(a-b)2+(b-1)2 +1
∵(a-b)2≥0,(b-1)2 ≥0
∴當(dāng)a=b=1時,M有最小值1
請根據(jù)上述材料解決下列問題:
(1)在橫線上添上一個常數(shù)項使之成為完全平方式:a 2+4a+ .
(2)用配方法因式分解: a2-24a+143
(3)若M=a2+2a +1,求M的最小值.
(4)已知a2+b2+c2-ab-3b-4c+7=0,求a+b+c的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中.
(1)畫圖:平移三角形ABC至三角形,使點A與A對應(yīng).
(2)線段AB與的位置關(guān)系是________.
(3)求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com