科目: 來源: 題型:
【題目】綜合與探究
問題情境:
(1)如圖1,兩塊等腰直角三角板△ABC和△ECD如圖所示擺放,其中∠ACB=∠DCE=90°,點F,H,G分別是線段DE,AE,BD的中點,A,C,D和B,C,E分別共線,則FH和FG的數(shù)量關系是 ,位置關系是 .
合作探究:
(2)如圖2,若將圖1中的△DEC繞著點C順時針旋轉至A,C,E在一條直線上,其余條件不變,那么(1)中的結論還成立嗎?若成立,請證明,若不成立,請說明理由.
(3)如圖3,若將圖1中的△DEC繞著點C順時針旋轉一個銳角,那么(1)中的結論是否還成立?若成立,請證明,若不成立,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知直線與反比例函數(shù)()圖像交于點A,將直線向右平移4個單位,交反比例函數(shù)()圖像于點B,交y軸于點C,連結AB、AC,則△ABC的面積為_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,小明想利用太陽光測量樓高,發(fā)現(xiàn)對面墻上有這棟樓的影子,小明邊移動邊觀察,發(fā)現(xiàn)站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊且高度恰好相同.此時測得墻上影子高,,(點A、E、C在同一直線上).已知小明身高EF是1.6m,則樓高AB為______m.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ABC中,,,,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿AB向B點運動,設E點的運動時間為t秒,連接DE,當以B、D、E為頂點的三角形與△ABC相似時,t的值為( 。
A.2或3.5B.2或3.2C.2或3.4D.3.2或3.4
查看答案和解析>>
科目: 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護生態(tài)環(huán)境,A,B兩村準備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費用各是多少元;
(2)在人均支出費用不變的情況下,為節(jié)約開支,兩村準備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,在以O為原點的直角坐標系中,拋物線的頂點為A (﹣1,﹣4),且經(jīng)過點B(﹣2,﹣3),與x軸分別交于C、D兩點.
(1)求直線OB以及該拋物線相應的函數(shù)表達式;
(2)如圖1,點M是拋物線上的一個動點,且在直線OB的下方,過點M作x軸的平行線與直線OB交于點N,求MN的最大值;
(3)如圖2,過點A的直線交x軸于點E,且AE∥y軸,點P是拋物線上A、D之間的一個動點,直線PC、PD與AE分別交于F、G兩點.當點P運動時,EF+EG是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為40元,若銷售價為60元,每天可售出20件,為迎接“雙十一”,專賣店決定采取適當?shù)慕祪r措施,以擴大銷售量,經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價1元,那么平均可多售出2件,設每件童裝降價x元(x>0)時,平均每天可盈利y元.
(1)寫出y與x的函數(shù)關系式;
(2)根(1)中你寫出的函數(shù)關系式,解答下列問題:
①當該專賣店每件童裝降價5元時,平均每天盈利多少元?
②當該專賣店每件童裝降價多少元時,平均每天盈利400元?
③該專賣店要想平均每天盈利600元,可能嗎?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在等腰Rt△ABC中,CA=BA,∠CAB=90°,點M是AB上一點,
(1)點N為BC上一點,滿足∠CNM=∠ANB.
①如圖1,求證:;②如圖2,若點M是AB的中點,連接CM,求的值;
(2)如圖3,若AM=1,BM=2,點P為射線CA(除點C外)上一個動點,直線PM交射線CB于點D,猜測△CPD面積是否有最小值,若有,請求出最小值:若沒有,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
①求y關于x的函數(shù)關系式;
②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?
(3)實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型電腦70臺.若商店保持兩種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com