科目: 來源: 題型:
【題目】在正方形中,點是邊的中點,點是對角線上的動點,連接,過點作交正方形的邊于點;
(1)當(dāng)點在邊上時,①判斷與的數(shù)量關(guān)系;
②當(dāng)時,判斷點的位置;
(2)若正方形的邊長為2,請直接寫出點在邊上時,的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】請根據(jù)圖中提供的信息,回答下列問題:
(1)一個水瓶與一個水杯分別是多少元?
(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)
查看答案和解析>>
科目: 來源: 題型:
【題目】為緩解油價上漲給出租車行業(yè)帶來的成本壓力,某市擬調(diào)整出租車運價,調(diào)整方案見下列表格及圖象(其中為常數(shù))
行駛路程 | 收費標(biāo)準(zhǔn) | |
調(diào)價前 | 調(diào)價后 | |
不超過的部分 | 起步價7元 | 起步價元 |
超過不超出的部分 | 每公里2元 | 每公里元 |
超出的部分 | 每公里元 |
設(shè)行駛路程為,調(diào)價前的運價(元),調(diào)價后運價(元),如圖,折線表示與之間的函數(shù)關(guān)系式,線段表示當(dāng)時,與的函數(shù)關(guān)系式,根據(jù)圖表信息,完成下列各題:
①填空: , , ;
②當(dāng)時,求與的關(guān)系,補充圖中該函數(shù)的圖像;
③函數(shù)與的圖象是否存在交點?若存在,求出交點的坐標(biāo),并說明該點的實際意義;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖:
根據(jù)以上信息解答下列問題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是______;
(2)扇形統(tǒng)計圖中,“電視”所對應(yīng)的圓心角的度數(shù)是______;
(3)請補全條形統(tǒng)計圖.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知:在△ABC中,∠A=90°,AB=AC=1,P是AC上不與A、C重合的一動點,PQ⊥BC于Q,QR⊥AB于R.
(1)求證:PQ=CQ;
(2)設(shè)CP的長為x,QR的長為y,求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍,并在平面直角坐標(biāo)系作出函數(shù)圖象.
(3)PR能否平行于BC?如果能,試求出x的值;若不能,請簡述理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的 ⊙O分別交AC,BC于點D,E,過點B作⊙O的切線,交AC的延長線于點F.
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價分別為20元、18元,這兩種菜品每天的營業(yè)額共為1120元,總利潤為280元.
(1)該店每天賣出這兩種菜品共多少份?
(2)該店為了增加利潤,準(zhǔn)備降低A種菜品的售價,同時提高B種菜品的售價,售賣時發(fā)現(xiàn),A種菜品售價每降0.5元可多賣1份;B種菜品售價每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤最多是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】某廠為了檢驗甲、乙兩車間生產(chǎn)的同一種零件的直徑的合格情況,隨機各抽取了10個樣品進行檢測,已知零件的直徑均為整數(shù),整理數(shù)據(jù)如下:(單位:)
170~174 | 175~179 | 180~184 | 185~189 | |
甲車間 | 1 | 3 | 4 | 2 |
乙車間 | 0 | 6 | 2 | 2 |
(1)分別計算甲、乙兩車間生產(chǎn)的零件直徑的平均數(shù);
(2)直接說出甲、乙兩車間生產(chǎn)的零件直徑的中位數(shù)都在哪個小組內(nèi),眾數(shù)是否在其相應(yīng)的小組內(nèi)?
(3)若該零件的直徑在的范圍內(nèi)為合格,甲、乙兩車間哪一個車間生產(chǎn)的零件直徑合格率高?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,菱形ABCD中,△EFP的頂點E、F、P分別在線段AB、AD、AC上,且EP=FP.
(1)證明:∠EPF+∠BAD=180°.
(2)若∠BAD=120°(如圖2),證明:AE+AF=AP.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com