科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+與直線AB交于點A(﹣1,0),B(4,),點D是拋物線A、B兩點間部分上的一個動點(不與點A、B重合),直線CD與y軸平行,交直線AB于點C,連接AD,BD.
(1)求拋物線的表達式;
(2)設點D的橫坐標為m,△ADB的面積為S,求S關于m的函數(shù)關系式,并求出當S取最大值時的點C的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC的頂點都在網(wǎng)格點上,其中A(2,﹣1),B(4,3),C(1,2)
(1)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,ABC的對應點分別為A′B′C′,畫出△A′B′C′,并寫出A′B′C′的坐標;
(2)求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點位于格點上,點M(m,n)是△ABC內部的任意一點,請按要求完成下面的問題
(1)將△ABC向右平移8個單位長度,得到△A1B1C1,請直接畫出△A1B1C1;
(2)將△ABC以原點為中心旋轉180°,得到△A2B2C2,請直接畫出△A2B2C2,并寫出點M的對應點M’的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1)所示:等邊△ABC中,線段AD為其內角角平分線,過D點的直線B1C1⊥AC于C1交AB的延長線于B1.
(1)請你探究: ,是否都成立?
(2)請你繼續(xù)探究:若△ABC為任意三角形,線段AD為其內角角平分線,請問一定成立嗎?并證明你的判斷.
(3)如圖(2)所示Rt△ABC中,∠ACB=90,AC=8,AB= ,DE∥AC交AB于點E,試求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】填空,將理由補充完整.
如圖,CF⊥AB于F,DE⊥AB于E,∠1+∠EDC=180°,求證:FG∥BC
證明:∵CF⊥AB,DE⊥AB(已知)
∴∠BED=∠BFC=90°(垂直的定義)
∴ED∥FC ( )
∴∠2=∠3 ( )
∵∠1+∠EDC=180°(已知)
又∵∠2+∠EDC=180°(平角的定義)
∴∠1=∠2 ( )
∴∠1=∠3(等量代換)
∴FG∥BC ( )
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的關系是___;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達式;
(2)在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標;
(3)若將△BOA繞點B按逆時針方向旋轉60°得到△BDE.直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.
請結合以上信息解答下列問題:
(1)m= ;
(2)請補全上面的條形統(tǒng)計圖;
(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數(shù)為 ;
(4)已知該校共有1200名學生,請你估計該校約有 名學生最喜愛足球活動.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=30°,將△ABC繞點C逆時針旋轉得到△DEC,點A的對應點D恰好落在線段CB的延長線上,連接AD,若∠ADE=90°,則∠BAD=_________
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y=x﹣與x軸交于點B1,以OB1為邊長作等邊三角形A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊三角形A2A1B2,過點A2作A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊三角形A3A2B3,…,則點A2017的橫坐標是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com