科目: 來源: 題型:
【題目】一個尋寶游戲的尋寶通道如圖①所示,通道由在同一平面內(nèi)的AB,BC,CA,OA, OB,OC組成。為記錄尋寶者的行進路線,在BC的中點M處放置了一臺定位儀器,設(shè)尋寶者行進的時間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進,且表示y與x的函數(shù)關(guān)系的圖像大致如圖②所示,則尋寶者的行進路線可能為:
A. A→O→B B. B→A→C C. B→O→C D. C→B→O
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的長為 ;
(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當⊙M與y軸相切時,sin∠BOQ= ;
(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當點P到達點A時,兩點同時停止運動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設(shè)點P運動的時間為t(秒).求當以B、D、E為頂點的三角形是直角三角形時點E的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】近段時間共享單車風(fēng)靡全國,刺激了自行車生產(chǎn)廠家,某廠家準備生產(chǎn)兩種型號的共享單車,已知生產(chǎn)6輛型單車與5輛型單車的成本相同,生產(chǎn)3輛型單車與2輛型單車共需1080元。
(1)求生產(chǎn)一輛型車和生產(chǎn)一輛型單車的成本各為多少元?
(2)由于共享單車公司需求量加大,生產(chǎn)廠家需要再生產(chǎn)兩種型號的單車共10000輛,恰逢原料商對基本原料的價格進行調(diào)整,調(diào)整后,型單車每輛成本價比原來降低10%,型單車每輛的成本價不變,如果廠家準備投入的總成本不超過216萬元,那么至少要生產(chǎn)多少輛型單車?
(3)在(2)的條件下,該生產(chǎn)廠家發(fā)現(xiàn),銷售過程中每輛型單車可獲利100元,每輛型單車可獲利120元,求全部銷售完這批單車獲得的利潤與型單車輛數(shù)之間的函數(shù)關(guān)系式,并求獲利最大的方案及最大利潤。
查看答案和解析>>
科目: 來源: 題型:
【題目】列方程解應(yīng)用題:
快放寒假了,小宇來到書店準備購買一些課外讀物在假期里閱讀.在選完書結(jié)賬時,收銀員告訴小宇,如果花20元辦理一張會員卡,用會員卡結(jié)賬買書,可以享受8折優(yōu)惠.小宇心算了一下,覺得這樣可以節(jié)省13元,很合算,于是采納了收銀員的意見.請根據(jù)以上信息解答下列問題:
(1)你認為小宇購買 元以上的書,辦卡就合算了;
(2)小宇購買這些書的原價是多少元.
查看答案和解析>>
科目: 來源: 題型:
【題目】如果關(guān)于的一元二次方程有兩個實數(shù)根,且其中一個根為另一個根的2倍,則稱這樣的方程為“倍根方程”,研究發(fā)現(xiàn)了此類方程的一般性結(jié)論:設(shè)其中一根為,則另一根為,因此,所有有,我們記“”即,方程為倍根方程,下面我們根據(jù)此結(jié)論來解決問題:
(1)方程①,方程②這兩個方程中,是被根方程的是_____________(填序號即可);
(2)若是倍根方程,求的值;
(3)若關(guān)于的一元二次方程是倍根方程,且在一次函數(shù)的圖象上,求此倍根方程的表達式。
查看答案和解析>>
科目: 來源: 題型:
【題目】在五一期間,小明、小亮等同學(xué)隨家長一同到某公園游玩,下面是購買門票時,小明與他爸爸的對話(如圖),試根據(jù)圖中的信息,解答下列問題:
(1)小明他們一共去了幾個成人,幾個學(xué)生?
(2)請你幫助小明算一算,用哪種方式購票更省錢?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥ x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點M的坐標;
(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ ABC的內(nèi)部(不包括△ ABC的邊界),求m的取值范圍;
(3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△ BCD相似,請直接寫出所有點P的坐標(直接寫出結(jié)果,不必寫過程).
查看答案和解析>>
科目: 來源: 題型:
【題目】通過解方程(組)使問題得到解決的思維方式就是方程思想,已學(xué)過的《勾股定理》及《一次函數(shù)》都與它有密切的聯(lián)系,最近方程家族的《一元二次方程》我們也學(xué)習(xí)了它的求解方法和應(yīng)用。如圖1,矩形中,在上,且,點從點出發(fā),以1個單位每秒的速度在邊上向點運動,設(shè)點的運動時間為秒。
(1)的面積為,求關(guān)于的函數(shù)關(guān)系式,并求出時的值;
(2)在點從點向運動的過程中,是否存在使的時刻?若存在,求出的值,若不存在,請說明理由;
(3)如圖2,分別是的中點,在點從向運動的過程中,線段掃過的圖形是什么形狀_________________,并直接寫出它的面積___________________________。
查看答案和解析>>
科目: 來源: 題型:
【題目】如果關(guān)于的一元二次方程有下列說法:①若,則;②若方程兩根為-1和2,則;③若方程有兩個不相等的實根,則方程必有兩個不相等的實根;④若,則方程有兩個不相等的實根,其中結(jié)論正確的是有( )個。
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com