相關習題
 0  358050  358058  358064  358068  358074  358076  358080  358086  358088  358094  358100  358104  358106  358110  358116  358118  358124  358128  358130  358134  358136  358140  358142  358144  358145  358146  358148  358149  358150  358152  358154  358158  358160  358164  358166  358170  358176  358178  358184  358188  358190  358194  358200  358206  358208  358214  358218  358220  358226  358230  358236  358244  366461 

科目: 來源: 題型:

【題目】如圖,在四邊形中,是對角線,,,延長的延長線于點.

1)求證:;

2)若,求的值;

3)過點,交的延長線于點,過點,交的延長線于點,連接.,點是直線上的動點,當的值最小時,點與點是否可能重合?若可能,請說明理由并求此時的值(用含的式子表示);若不可能,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知:關于 x 的方程 2x2+kx﹣1=0.

(1)求證:方程有兩個不相等的實數根;

(2)若方程的一個根是﹣1,求另一個根及 k 值.

查看答案和解析>>

科目: 來源: 題型:

【題目】解方程:

(1)x2+6x+5=0 (配方法) 

(2)x2﹣1=2(x+1)(因式分解法)

(3)2x2+3=6x (公式法)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.

(1)若某反比例函數的圖象的一個分支恰好經過點A,求這個反比例函數的解析式;

(2)若把含30°角的直角三角板繞點O按順時針方向旋轉后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結果保留π)

【答案】(1)反比例函數的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據tan30°=,求出AB,進而求出OA,得出A的坐標,設過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴點A的坐標為(3,3).

設反比例函數的解析式為y= (k≠0),

∴3,∴k=9,則這個反比例函數的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點睛:本題考查了勾股定理、待定系數法求函數解析式、特殊角的三角函數值、扇形的面積及等腰三角形的性質,本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關鍵.

型】解答
束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.

(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知反比例函數y=的圖象的一支位于第一象限,點A(x1,y1),B(x2,y2)都在該函數的圖象上.

(1)m的取值范圍是   ,函數圖象的另一支位于第一象限,若x1>x2,y1>y2,則點B在第   象限;

(2)如圖,O為坐標原點,點A在該反比例函數位于第一象限的圖象上,點C與點A關于x軸對稱,若OAC的面積為6,求m的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做等高底三角形,這條邊叫做這個三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請說明理由.

(2)問題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關于BC所在直線的對稱圖形得到A'BC,連結AA′交直線BC于點D.若點BAA′C的重心,求的值.

(3)應用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC倍.將ABC繞點C按順時針方向旋轉45°得到A'B'C,A′C所在直線交l2于點D.求CD的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,菱形OABC的頂點A的坐標為(3,4),頂點Cx軸的正半軸上,反比例函數y=(x>0)的圖象經過頂點B,則反比例函數的表達式為( 。

A. y= B. y= C. y= D. y=

查看答案和解析>>

科目: 來源: 題型:

【題目】PQN中,若∠PQαα≤25°),則稱PQN差角三角形”,且∠P Q差角”.

1)已知ABC是等邊三角形,判斷ABC是否為差角三角形,并說明理由;

2)在ABC中,∠C90°,50°≤B≤70°,判斷ABC是否為差角三角形,若是,請寫出所有的差角并說明理由;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某企業(yè)在甲地有一工廠(簡稱甲廠)生產某產品,2017年的年產量過萬件,2018年甲廠經過技術改造,日均生產的該產品數是該廠2017年的2倍還多2.

1)若甲廠2018年生產200件該產品所需的時間與2017年生產99件該產品所需的時間相同,則2017年甲廠日均生產該產品多少件?

2)由于該產品深受顧客歡迎,2019年該企業(yè)在乙地建立新廠(簡稱乙廠)生產該產品.乙廠的日均生產的該產品數是甲廠2017年的3倍還多4.同年該企業(yè)要求甲、乙兩廠分別生產m,n件產品(甲廠的日均產量與2018年相同),m:n14:25,若甲、乙兩廠同時開始生產,誰先完成任務?請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】兩個反比例函數在第一象限內的圖象如圖所示,點P的圖象上,PC軸于點C,交的圖象于點A,PC軸于點D,交的圖象于點B. 當點P的圖象上運動時,以下結論:

的值不會發(fā)生變化

PAPB始終相等

④當點APC的中點時,點B一定是PD的中點.

其中一定不正確的是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案