科目: 來源: 題型:
【題目】在學(xué)習(xí)軸對稱的時候,老師讓同學(xué)們思考課本中的探究題.
如圖(1),要在燃?xì)夤艿?/span>l上修建一個泵站,分別向A、B兩鎮(zhèn)供氣.泵站修在管道的什么地方,可使所用的輸氣管線最短?
你可以在l上找?guī)讉點試一試,能發(fā)現(xiàn)什么規(guī)律?你可以在上找?guī)讉點試一試,能發(fā)現(xiàn)什么規(guī)律?
聰明的小華通過獨立思考,很快得出了解決這個問題的正確辦法.他把管道l看成一條直線(圖(2)),問題就轉(zhuǎn)化為,要在直線l上找一點P,使AP與BP的和最。淖龇ㄊ沁@樣的:
①作點B關(guān)于直線l的對稱點B′.
②連接AB′交直線l于點P,則點P為所求.
請你參考小華的做法解決下列問題.如圖在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使△PDE得周長最。
(1)在圖中作出點P(保留作圖痕跡,不寫作法).
(2)請直接寫出△PDE周長的最小值:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD,CE分別是AC,AB邊上的高,BD, CE交于O,則圖中共有相似三角形( 。
A. 5對 B. 6對 C. 7對 D. 8對
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①、②、③,正三角形、正方形、正五邊形分別是的內(nèi)接三角形、內(nèi)接四邊形、內(nèi)接五邊形,點、分別從點、開始,以相同的速度中上逆時針運動.如圖①、②、③,正三角形、正方形、正五邊形分別是的內(nèi)接三角形、內(nèi)接四邊形、內(nèi)接五邊形,點、分別從點、開始,以相同的速度中上逆時針運動.
(1)求圖①中的度數(shù);
(2)圖②中,的度數(shù)是________,圖③中的度數(shù)是________;
(3)根據(jù)前面探索,你能否將本題推廣到一般的正邊形情況?若能,寫出推廣問題和結(jié)論;若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面材料:
小偉遇到這樣一個問題:如圖,在正三角形內(nèi)有一點,且,,,求的度數(shù).小偉是這樣思考的:如圖,利用旋轉(zhuǎn)和全等的知識構(gòu)造,連接,得到兩個特殊的三角形,從而將問題解決.
(1)請你回答:圖中的度數(shù)等于________.
參考小偉同學(xué)思考問題的方法,解決下列問題:
(2)如圖,在正方形內(nèi)有一點,且,,,求的度數(shù)和正方形的邊長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,中,,,.若有一半徑為的圓分別與、相切,則下列何種方法可找到此圓的圓心( )
A. 的角平分線與的交點 B. 的中垂線與中垂線的交點
C. 的角平分線與中垂線的交點 D. 的角平分線與中垂線的交點
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,已知在平面直角坐標(biāo)系中,A(,0),B(4,0),C(0,3),過點C作CD∥x軸,與直線AD交于點D,直線AD與y軸交于點E,連接AC、BD,且tan∠DAB=.
(1)求直線AD的解析式和線段BD所在直線的解析式.
(2)如圖2,將△CAD沿著直線CD向右平移得△C1A1D1,當(dāng)C1A1⊥EA1時,在x軸上是否存在點M,使△A1D1M是以A1D1為腰的等腰三角形,若存在,求出△A1D1M的周長;若不存在,請說明理由.
(3)如圖3,延長DB至F,使得BF=DB,點K為線段AD上一動點,連接KF、BK,將△FBK沿BK翻折得△F′BK,請直接寫出當(dāng)DK為何值時,△F′BK與△DBK的重疊部分的面積恰好是△FKD的面積的.
查看答案和解析>>
科目: 來源: 題型:
【題目】將一個三位正整數(shù)n各數(shù)位上的數(shù)字重新排列(含n本身)后,得到新的三位數(shù)(a<c),在所有重新排列大的數(shù)中,當(dāng)|a+c﹣2b|最小時,我們稱是n的“天時數(shù)”,并規(guī)定F(n)=b2﹣ac.當(dāng)|a+c﹣2b|最大時,我們稱是n的“地利數(shù)”,并規(guī)定G(n)=ac﹣b2.并規(guī)定M(n)=是n的“人和數(shù)”,例如:215可以重新排列為125,152,215,因為|1+5﹣2×2|=2,|1+2﹣2×5|=7,|2+5﹣2×1|=5,且2<5<7,所以125是215的“天時數(shù)”F(125)=22﹣1×5=﹣1,152是215的“地利數(shù)”,G(152)=1×2﹣52=﹣23,M(215)=.
(1)計算:F(168),G(168);
(2)設(shè)三位自然數(shù)s=100x+50+y(1≤x≤9,1≤y≤9,且x,y均為正整數(shù)),交換其個位上的數(shù)字與百位上的數(shù)字得到t,若s﹣t=693,那么我們稱s為“厚積薄發(fā)數(shù)”;請求出所有“厚積薄發(fā)數(shù)”中M(s)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com