科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A(4,1),B(1,1)C(4,5),D(6,﹣3),E(﹣2,5)
(1)在坐標(biāo)系中描出各點,畫出△AEC,△BCD.
(2)求出△AEC的面積(簡要寫明簡答過程).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點,試分別根據(jù)下列條件,求出點的坐標(biāo)。
(1)點在軸上;
(2)點橫坐標(biāo)比縱坐標(biāo)大3;
(3)點在過點,且與軸平行的直線上。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,E是□ABCD的邊BC延長線上一點,AE交CD于點F,FG∥AD交AB于點G.
(1)填空:圖中與△CEF相似的三角形有__________;(寫出圖中與△CEF相似的所有三角形)
(2)從(1)中選出一個三角形,并證明它與△CEF相似.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點A作AB⊥x軸,垂足為點A,過點C作CB⊥y軸,垂足為點C,兩條垂線相交于點B.
(1)線段AB,BC,AC的長分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DE交AB于點D,交AC于點E,連接CD,如圖2.
請從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長;
②在y軸上,是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標(biāo);若不存在,請說明理由.
B:①求線段DE的長;
②在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=﹣x2﹣4x+c經(jīng)過點A(2,0).
(1)求拋物線的解析式和頂點坐標(biāo);
(2)若點B(m,n)是拋物線上的一動點,點B關(guān)于原點的對稱點為C.
①若B、C都在拋物線上,求m的值;
②若點C在第四象限,當(dāng)AC2的值最小時,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y=x+2的圖象與x軸和y軸分別交于點A和B,直線y=kx+b經(jīng)過點B與點C(2,0).
(1)點A的坐標(biāo)為 ;點B的坐標(biāo)為 ;
(2)求直線y=kx+b的表達(dá)式;
(3)在x軸上有一動點M(t,0),過點M做x軸的垂線與直線y=x+2交于點E,與直線y=kx+b交于點F,若EF=OB,求t的值.
(4)當(dāng)點M(t,0)在x軸上移動時,是否存在t的值使得△CEF是直角三角形?若存在,直接寫出t的值;若不存在,直接答不存在.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知兩條射線OM∥CN,動線段AB的兩個端點A、B分別在射線OM、CN上,且∠C=∠OAB=108°,F在線段CB上,OB平分∠AOF.
(1)請在圖中找出與∠AOC相等的角,并說明理由;
(2)判斷線段AB與OC 的位置關(guān)系是什么?并說明理由;
(3)若平行移動AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個比值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C,D在⊙O上,且點C是的中點,過點 C作AD的垂線 EF交直線 AD于點 E.
(1)求證:EF是⊙O的切線;
(2)連接BC,若AB=5,BC=3,求線段AE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市為了鼓勵居民節(jié)約用水,決定實行兩級收費制度.若每月用水量不超過14噸(含14噸),則每噸按政府補貼優(yōu)惠價m元收費;若每月用水量超過14噸,則超過部分每噸按市場價n元收費.小明家3月份用水20噸,交水費49元;4月份用水18噸,交水費42元.
(1)求每噸水的政府補貼優(yōu)惠價和市場價分別是多少?
(2)設(shè)每月用水量為x噸(x>14),應(yīng)交水費為y元,請寫出y與x之間的函數(shù)關(guān)系式;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com