科目: 來源: 題型:
【題目】在正方形ABCD和正方形DEFG中,頂點(diǎn)B、D、F在同一直線上,H是BF的中點(diǎn).
(1)如圖1,若AB=1,DG=2,求BH的長(zhǎng);
(2)如圖2,連接AH,GH.
小宇觀察圖2,提出猜想:AH=GH,AH⊥GH.小宇把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:延長(zhǎng)AH交EF于點(diǎn)M,連接AG,GM,要證明結(jié)論成立只需證△GAM是等腰直角三角形;
想法2:連接AC,GE分別交BF于點(diǎn)M,N,要證明結(jié)論成立只需證△AMH≌△HNG.…
請(qǐng)你參考上面的想法,幫助小宇證明AH=GH,AH⊥GH.(一種方法即可)
查看答案和解析>>
科目: 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計(jì)了這15人某月的加工零件數(shù)如下:
每人加工零件數(shù) | 540 | 450 | 300 | 240 | 210 | 120 |
人數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)寫出這15人該月加工零件的平均數(shù)、中位數(shù)和眾數(shù);
(2)生產(chǎn)部負(fù)責(zé)人要定出合理的每人每月生產(chǎn)定額,你認(rèn)為應(yīng)該定為多少件合適?
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)在如圖所示的平面直角坐標(biāo)系中表示下面各點(diǎn):
A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);
(2)A點(diǎn)到原點(diǎn)的距離是 .
(3)將點(diǎn)C向x軸的負(fù)方向平移6個(gè)單位,它與點(diǎn) 重合.
(4)連接CE,則直線CE與y軸是什么位置關(guān)系?
(5)點(diǎn)D分別到x、y軸的距離是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)P為AB邊上任一點(diǎn),過P分別作PE⊥AC于E,PF⊥BC于F,則線段EF的最小值是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),且abc≠0)與直線l都經(jīng)過y軸上的同一點(diǎn),且拋物線L的頂點(diǎn)在直線l上,則稱此拋物線L與直線l具有“一帶一路”關(guān)系,并且將直線l叫做拋物線L的“路線”,拋物線L叫做直線l的“帶線”.
(1)若“路線”l的表達(dá)式為y=﹣x+2,它的“帶線”L的頂點(diǎn)在反比例函數(shù)y=的圖象上,求“帶線”L的表達(dá)式;
(2)如果拋物線y=mx2﹣2mx+m﹣1與直線y=nx+1具有“一帶一路”關(guān)系,求m,n的值;
(3)設(shè)(2)中的“帶線”L與它的“路線”l在y軸上的交點(diǎn)為A.已知點(diǎn)P為“帶線”L上的點(diǎn),當(dāng)以點(diǎn)P為圓心的圓與“路線”l相切于點(diǎn)A時(shí),求出點(diǎn)P的坐標(biāo)
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對(duì)邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
科目: 來源: 題型:
【題目】(題文)如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連結(jié)AF,BF,EF,過點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè) =n.
(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AH是圓O的直徑,AE平分∠FAH,交⊙O于點(diǎn)E,過點(diǎn)E的直線FG⊥AF,垂足為F,B為直徑OH上一點(diǎn),點(diǎn)E、F分別在矩形ABCD的邊BC和CD上.
(1)求證:直線FG是⊙O的切線;
(2)若AD=8,EB=5,求⊙O的直徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)O的直線分別交邊AB、CD、AD、BC于點(diǎn)E、F、G、H
(感知)如圖①,若四邊形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因?yàn)?/span>S△AOB=S四邊形ABCD,所以S四邊形AEOG=S正方形ABCD(不要求證明);
(拓展)如圖②,若四邊形ABCD是矩形,且S四邊形AEOG=S矩形ABCD,若AB=a,AD=b,BE=m,求AG的長(zhǎng)(用含a、b、m的代數(shù)式表示);
(探究)如圖③,若四邊形ABCD是平行四邊形,且S四邊形AEOG=SABCD,若AB=3,AD=5,BE=1,則AG=______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1為放置在水平桌面上的臺(tái)燈的平面示意圖,燈臂AO長(zhǎng)為50cm,與水平桌面所形成的夾角∠OAM 為75°.由光源O射出的邊緣光線OC,OB 與水平桌面所形成的夾角∠OCA,∠OBA分別為90°和30°.(不考慮其他因素,結(jié)果精確到0.1cm.sin75°≈0.97,cos75°≈0.26,≈1.73)
(1)求該臺(tái)燈照亮水平桌面的寬度BC.
(2)有人在此臺(tái)燈下看書,將其側(cè)面抽象成如圖2所示的幾何圖形,若書EF與水平桌面的夾角∠EFC為60°,書的長(zhǎng)度EF為24cm,點(diǎn)P為眼睛所在位置,點(diǎn)P在EF的垂直平分線上,且到EF距離約為34cm,求眼睛到水平桌面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com