科目: 來源: 題型:
【題目】隨著柴靜紀(jì)錄片《穹頂之下》的播出,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也大增,商社電器從廠家購進(jìn)了A,B兩種型號的空氣凈化器,已知一臺A型空氣凈化器的進(jìn)價比一臺B型空氣凈化器的進(jìn)價多300元,用7500元購進(jìn)A型空氣凈化器和用6000元購進(jìn)B型空氣凈化器的臺數(shù)相同.
(1)求一臺A型空氣凈化器和一臺B型空氣凈化器的進(jìn)價各為多少元?
(2)在銷售過程中,A型空氣凈化器因為凈化能力強,噪音小而更受消費者的歡迎.為了增大B型空氣凈化器的銷量,商社電器決定對B型空氣凈化器進(jìn)行降價銷售,經(jīng)市場調(diào)查,當(dāng)B型空氣凈化器的售價為1800元時,每天可賣出4臺,在此基礎(chǔ)上,售價每降低50元,每天將多售出1臺,如果每天商社電器銷售B型空氣凈化器的利潤為3200元,請問商社電器應(yīng)將B型空氣凈化器的售價定為多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】小剛準(zhǔn)備用一段長50米的籬笆圍成一個三角形形狀的場地,用于飼養(yǎng)雞,已知第一條邊長為m米,由于條件限制第二條邊長只能比第一條邊長的3倍少2米.
(1)用含m的式子表示第三條邊長;
(2)第一條邊長能否為10米?為什么?
(3)若第一條邊長最短,求m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】韋達(dá)定理:若一元二次方程ax2+bx+c=0(a≠0)的兩根分別為x1、x2 , 則x1+x2=﹣ , x1x2= , 閱讀下面應(yīng)用韋達(dá)定理的過程:
若一元二次方程﹣2x2+4x+1=0的兩根分別為x1、x2 , 求x12+x22的值.
解:該一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0
由韋達(dá)定理可得,x1+x2=﹣=﹣=2,x1x2===﹣
x12+x22=(x1+x2)2﹣2x1x2
=22﹣2×(﹣)
=5
然后解答下列問題:
(1)設(shè)一元二次方程2x2+3x﹣1=0的兩根分別為x1,x2, 不解方程,求x12+x22的值;
(2)若關(guān)于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的兩根分別為α,β,且α2+β2=4,求k的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】把一張邊長為40 cm的正方形硬紙板,進(jìn)行適當(dāng)?shù)牟眉,折成一個長方體盒子(紙板的厚度忽略不計).
(1)如圖,若在正方形硬紙板的四角各剪掉一個同樣大小的正方形,將剩余部分折成一個無蓋的長方體盒子.
①要使折成的長方體盒子的底面積為484 cm2,那么剪掉的正方形的邊長為多少?
②折成的長方體盒子的側(cè)面積是否有最大值?如果有,求出這個最大值和此時剪掉的正方形的邊長;如果沒有,說明理由.
(2)若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分折成一個有蓋的長方體盒子.若折成的一個長方體盒子的表面積為550 cm2,求此時長方體盒子的長、寬、高(只需求出符合要求的一種情況).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m﹣1)x+m2=0有兩個實數(shù)根x1和x2.
(1)求實數(shù)m的取值范圍;
(2)當(dāng)x12﹣x22=0時,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線y=x+2與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點,與x軸的另一個交點為 C.
(1)求拋物線的解析式;
(2)直線AB上方拋物線上的點D,使得∠DBA=2∠BAC,求D點的坐標(biāo);
(3)M是平面內(nèi)一點,將△BOC繞點M逆時針旋轉(zhuǎn)90°后,得到△B1O1C1,若△B1O1C1的兩個頂點恰好落在拋物線上,請求點B1的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AD∥BC,AB⊥BC,AB=BC=4,P為線段AB上一動點.將△BPC沿PC翻折至△EPC,延長CE交射線AD于點D
(1)如圖1,當(dāng)P為AB的中點時,求出AD的長
(2)如圖2,延長PE交AD于點F,連接CF,求證:∠PCF=45°
(3)如圖3,∠MON=45°,在∠MON內(nèi)部有一點Q,且OQ=8,過點Q作OQ的垂線GH分別交OM、ON于G、H兩點.設(shè)QG=x,QH=y,直接寫出y關(guān)于x的函數(shù)解析式
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校計劃在總費用2300元的限額內(nèi),租用客車送234名學(xué)生和6名教師集體外出活動,每輛客車上至少要有1名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.
甲種客車 | 乙種客車 | |
載客量/(人/輛) | 45 | 30 |
租金/(元/輛) | 400 | 280 |
(1)共需租多少輛客車?
(2)請給出最節(jié)省費用的租車方案.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,在△ABC中,∠ACB=30°
(1)如圖1,當(dāng)AB=AC=2,求BC的值;
(2)如圖2,當(dāng)AB=AC,點P是△ABC內(nèi)一點,且PA=2,PB=,PC=3,求∠APC的度數(shù);
(3)如圖3,當(dāng)AC=4,AB=(CB>CA),點P是△ABC內(nèi)一動點,則PA+PB+PC的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com