6.若方程16x2+ky2=16k表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)k的取值范圍是(0,16).

分析 化方程為圓錐曲線方程的標(biāo)準(zhǔn)式,結(jié)合方程16x2+ky2=16k表示焦點(diǎn)在y軸上的橢圓即可求得k值.

解答 解:由題意可知k≠0,
方程化為$\frac{{x}^{2}}{k}+\frac{{y}^{2}}{16}=1$,
∵方程16x2+ky2=16k表示焦點(diǎn)在y軸上的橢圓,
∴0<k<16.
故答案為(0,16).

點(diǎn)評(píng) 本題考查橢圓的簡單性質(zhì),考查了曲線表示橢圓的條件,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}中,前n項(xiàng)和為Sn,a1≠a2,Sn=pnan
  (1)求p的值;
  (2)確定數(shù)列{an}是否為等差數(shù)列或等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.等比數(shù)列{an}中,a4a10=16,則a7=±4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)集合A={m-2,-3},B={-1,m-3},若A∩B={-3},則m的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若集合A=(-∞,m],B={x|-2<x≤2},且B⊆A,則實(shí)數(shù)m的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,河的兩岸,分別有生活小區(qū)ABC和DEF,其中AB⊥BC,EF⊥DF,DF⊥AB,C,E,F(xiàn)三點(diǎn)共線,F(xiàn)D與BA的延長線交于點(diǎn)O,測得AB=3km,BC=4km,DF=$\frac{9}{4}$km,F(xiàn)E=3km,EC=$\frac{3}{2}$km.若以O(shè)A,OD所在直線為x,y軸建立平面直角坐標(biāo)系xoy,則河岸DE可看成是曲線y=$\frac{x+b}{x+a}$(其中a,b為常數(shù))的一部分,河岸AC可看成是直線y=kx+m(其中k,m為常數(shù))的一部分.
(1)求a,b,k,m的值;
(2)現(xiàn)準(zhǔn)備建一座橋MN,其中M,N分別在DE,AC上,且MN⊥AC,設(shè)點(diǎn)M的橫坐標(biāo)為t.
①請寫出橋MN的長l關(guān)于t的函數(shù)關(guān)系式l=f(t),并注明定義域;
②當(dāng)t為何值時(shí),l取得最小值?最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.點(diǎn)P在直角坐標(biāo)系第一、三象限的角平分線上,它到原點(diǎn)的距離等于它到點(diǎn)Q(4$\sqrt{3}$,0)的距離,則點(diǎn)P的坐標(biāo)是(2$\sqrt{3}$,2$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若直線過點(diǎn)(-1,1),(2,2),則此直線的斜率為( 。
A.3B.$\frac{1}{3}$C.-3D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.O為△ABC內(nèi)任意一點(diǎn),如圖所示,D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn).求證:$\overrightarrow{OA}$$+\overrightarrow{OB}$$+\overrightarrow{OC}$=$\overrightarrow{OD}$$+\overrightarrow{OE}$$+\overrightarrow{OF}$.

查看答案和解析>>

同步練習(xí)冊答案