若z=
2-i
1+2i
=x+yi,x,y∈R,則集合{x,2x,y}子集個(gè)數(shù)是( 。
A、8B、7C、6D、9
考點(diǎn):復(fù)數(shù)相等的充要條件
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則和集合的子集的意義即可得出.
解答: 解:∵z=
2-i
1+2i
=x+yi,
∴x+yi=
(2-i)(1-2i)
(1+2i)(1-2i)
=
-5i
5
=-i,
∴x=0,y=-1.
∴集合{x,2x,y}={0,1,-1},其子集的個(gè)數(shù)為23,即為8.
故選:A.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則和集合的子集的意義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
OA
=(1,cosθ),
OB
=(-
1
2
,tanθ),θ∈(
π
2
,
2
),且
OA
OB
,則θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以圓x2+2x+y2=0的圓心C為圓心,且與直線x+y=1相切的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,an+1=3Sn(n≥1),則a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若U={1,2,3,4,5,6,7,8},A={1,2,3},B={5,6,7},則(∁UA)∩(∁UB)=( 。
A、{4,8}
B、{2,4,6,8}
C、{1,3,5,7}
D、{1,2,3,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各組命題:
(1)p:a+b=2,q:直線x+y=0與圓(x-a)2+(y-b)2=2相切;
(2)p:|x|=x,q:x2+x≥0;
(3)設(shè)l,m均為直線,σ為平面,其中l(wèi)?σ,m⊆σ,p:l∥σ,q:l∥m.
(4)p:數(shù)列l(wèi)og3n,log3(n+1),log3(n+3),(n∈N*)成等差數(shù)列;q:數(shù)列(
1
3
)n
3
3n
,3n(n∈N*)成等比數(shù)列.
其中,p是q的充分不必要條件的是( 。
A、(1)(2)
B、(1)(4)
C、(1)(3)
D、(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=(
2
5
)
2
,b=x
2
5
,c=log
2
5
x,則當(dāng)x>1時(shí),a,b,c的大小關(guān)系是(  )
A、a<b<c
B、c<b<a
C、c<a<b
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列判斷正確的是( 。
A、“正四棱錐的底面是正方形”的逆命題為真命題.
B、“ac2>bc2”的充要條件是“a>b”.
C、不等式
1
x-1
>1的解集為{x|x<2}.
D、若“p或q”是真命題,則p,q中至少有一個(gè)真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市要對(duì)兩千多名出租車司機(jī)的年齡進(jìn)行調(diào)查,現(xiàn)從的頻率分布直方圖如圖所示,利用這個(gè)殘缺的頻率分布直方圖估計(jì)該市出租車司機(jī)年齡的中位數(shù)大約是( 。
A、31.6歲
B、32.6歲
C、33.6歲
D、36.6歲

查看答案和解析>>

同步練習(xí)冊(cè)答案